【題目】已知拋物線y=x2+bx+c與x軸交于點A(﹣2,0)
(1)填空:c= ;(用含b的式子表示)
(2)b<4.
①求證:拋物線與x軸有兩個交點;
②設(shè)拋物線與x軸的另一個交點為B,當(dāng)線段AB上恰有5個整點(橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點),求b的取值范圍;
(3)平移拋物線,使其頂點P落在直線y=3x﹣2上,設(shè)拋物線與直線的另一個交點為Q,C在該直線下方的拋物線上,求△CPQ面積的最大值.
【答案】(1)2b﹣4;(2)①詳見解析;②﹣1<b≤0;(3)△CPQ面積的最大值為.
【解析】
(1)將點A的坐標(biāo)代入拋物線的解析式求解即可;
(2)①由(1)可知拋物線的解析式為y=x2+bx+2b4,然后證明△>0即可;
②當(dāng)點B在點A的右側(cè)時,0≤<;當(dāng)點B在點A的左側(cè)時,4.5<≤4,從而可求得b的取值范圍;
(3)以平移后拋物線的頂點為坐標(biāo)原點建立坐標(biāo)系,則在新坐標(biāo)系內(nèi)拋物線的解析式為y=x2,直線的解析式為y=3x.過點C作CD∥y軸,交直線于點D.設(shè)點C的坐標(biāo)為(x,x2),則點D的坐標(biāo)為(x,3x),則DC=3xx2,然后建立三角形的面積與x的函數(shù)關(guān)系式求解即可.
解:(1)將點A的坐標(biāo)代入y=x2+bx+c得:4﹣2b+c=0,
∴c=2b﹣4,
故答案為:2b﹣4;
(2)①由(1)可知拋物線的解析式為y=x2+bx+2b﹣4,
∴△=b2﹣4(2b﹣4)=b2﹣8b+16=(b﹣4)2,
又∵b<4,
∴△>0,
∴拋物線與x軸有兩個交點;
②當(dāng)點B在點A的右側(cè)時.
∵線段AB上恰有5個整點,
∴0≤<,即0≤﹣b<,
∴﹣1<b≤0;
當(dāng)點B在點A的左側(cè)時,
∵線段AB上恰有5個整點,
∴﹣4.5<≤﹣4,即﹣4.5<﹣b≤﹣4.
∴8≤b<9.
解得:﹣1<b≤0或8≤b<9,
又∵b<4,
∴b的取值范圍是:﹣1<b≤0;
(3)如圖所示:
以平移后拋物線的頂點為坐標(biāo)原點建立坐標(biāo)系,則在新坐標(biāo)系內(nèi)拋物線的解析式為y=x2,直線的解析式為y=3x.
過點C作CD∥y軸,交直線于點D,
將y=3x代入y=x2得3x=x2,解得:x=0或x=3,
設(shè)點C的坐標(biāo)為(x,x2),則點D的坐標(biāo)為(x,3x),則DC=3x﹣x2,
∴△PQC的面積=DC|xQ﹣xP|=×3×(3x﹣x2)=﹣x2+=﹣(x﹣)2+,
∴△CPQ面積的最大值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設(shè)其出水口為原點,出水口離岸邊18m,音樂變化時,拋物線的頂點在直線y=kx上變動,從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.
(1)若已知k=1,且噴出的拋物線水線最大高度達3m,求此時a、b的值;
(2)若k=1,噴出的水恰好達到岸邊,則此時噴出的拋物線水線最大高度是多少米?
(3)若k=3,a=﹣,則噴出的拋物線水線能否達到岸邊?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、D在圓上,,過點C作CE⊥AD交AD的延長線于點E.
(1)求證:CE是⊙O的切線;
(2)已知BC=3,AC=4,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家限購以來,二手房和新樓盤的成交量迅速下降.據(jù)統(tǒng)計,某市限購前某季度二手房和新樓盤成交量為9500套;限購后,同一季度二手房和新樓盤的成交量共4425套.其中二手房成交量比限購前減少55%,新樓盤成交量比限購前減少52%.
(1)問限購后二手房和新樓盤各成交多少套?
(2)在成交量下跌的同時,房價也大幅跳水.某樓盤限購前均價為12000元/m2,限購后,房價經(jīng)過二次下調(diào)后均價為9720元/m2,求平均每次下調(diào)的百分率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,D是弧的中點,過點D作DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)當(dāng)AB=10,AC=時,求弧的長;
(3)當(dāng)AB=20時,直接寫出△ABC面積最大時,點D到直徑AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC與△CDA關(guān)于點O成中心對稱,過點O任作直線EF分別交AD,BC于點E,F,則下則結(jié)論:①點E和點F,點B和點D是關(guān)于中心O的對稱點;②直線BD必經(jīng)過點O;③四邊形ABCD是中心對稱圖形;④四邊形DEOC與四邊形BFOA的面積必相等;⑤△AOE與△COF成中心對稱.其中正確的個數(shù)為 ( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:
x | … | -4 | -3 | -2 | -1 | 0 | 1 | … |
… | 5 | 0 | -3 | -4 | -3 | m | … |
(1)m= ;
(2)在圖中畫出這個二次函數(shù)的圖象;
(3)當(dāng)時,x的取值范圍是 ;
(4)當(dāng)時,y的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于、兩點(點在點的左邊),與軸交于點,連接.
(1)求、、三點的坐標(biāo);
(2)若點為線段上的一點(不與、重合),軸,且交拋物線于點,交軸于點,當(dāng)的面積最大時,求的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com