【題目】如圖,已知拋物線軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),與軸交于點(diǎn),連接.

1)求、、三點(diǎn)的坐標(biāo);

2)若點(diǎn)為線段上的一點(diǎn)(不與、重合),軸,且交拋物線于點(diǎn),交軸于點(diǎn),當(dāng)的面積最大時(shí),求的周長(zhǎng).

【答案】1)點(diǎn),,的坐標(biāo)是:;(2的周長(zhǎng)

【解析】

1)依據(jù)拋物線的解析式直接求得C的坐標(biāo),令y=0解方程即可求得AB點(diǎn)的坐標(biāo);

2)設(shè)的面積為,點(diǎn)的坐標(biāo)為,則可表示出NMBN,根據(jù)題意,列式求解得,則當(dāng)時(shí),有最大值,則可求解的周長(zhǎng).

(1)由拋物線的解析式y(tǒng)=-x2+2x+3,

當(dāng)時(shí),,

∴C(0,3),

當(dāng)時(shí),,

解得:,,

,

點(diǎn),,的坐標(biāo)是:

2)設(shè)的面積為,點(diǎn)的坐標(biāo)為,

則有,,

,.

根據(jù)題意,

,

當(dāng)時(shí),有最大值,

此時(shí),

,

.

根據(jù)勾股定理,得

的周長(zhǎng)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+cx軸交于點(diǎn)A(﹣2,0

1)填空:c=   ;(用含b的式子表示)

2b4

①求證:拋物線與x軸有兩個(gè)交點(diǎn);

②設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為B,當(dāng)線段AB上恰有5個(gè)整點(diǎn)(橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)),求b的取值范圍;

3)平移拋物線,使其頂點(diǎn)P落在直線y=3x2上,設(shè)拋物線與直線的另一個(gè)交點(diǎn)為Q,C在該直線下方的拋物線上,求△CPQ面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=x-3x軸于點(diǎn)B,交y軸于點(diǎn)C,拋物線經(jīng)過點(diǎn)A(-10),BC三點(diǎn),點(diǎn)Fy軸負(fù)半軸上,OF=OA.

(1)求拋物線的解析式;

(2)在第一象限的拋物線上存在一點(diǎn)P,滿足SABC=SPBC,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)點(diǎn)D是直線BC的下方的拋物線上的一個(gè)動(dòng)點(diǎn),過D點(diǎn)作DEy軸,交直線BC于點(diǎn)E,①當(dāng)四邊形CDEF為平行四邊形時(shí),求D點(diǎn)的坐標(biāo);

②是否存在點(diǎn)D,使CEDF互相垂直平分?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按如下方法,將ABC的三邊縮小的原來的,如圖,任取一點(diǎn)O,連AO、BO、CO,并取它們的中點(diǎn)DE、F,得DEF,則下列說法正確的個(gè)數(shù)是( 。

ABCDEF是位似圖形ABCDEF是相似圖形

ABCDEF的周長(zhǎng)比為12ABCDEF的面積比為41

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒4cm的速度向點(diǎn)B勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0<t<2),連接PQ.

(1)若BPQABC相似,求t的值;

(2)連接AQ、CP,若AQCP,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A﹣1,0)、C0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DC、BCDB,求證:△BCD是直角三角形;

3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新華商場(chǎng)為迎接家電下鄉(xiāng)活動(dòng)銷售某種冰箱,每臺(tái)進(jìn)價(jià)為2500元,市場(chǎng)調(diào)研表明;當(dāng)銷售價(jià)定為2900元時(shí),平均每天能售出8臺(tái);而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4臺(tái),商場(chǎng)要想使這種冰箱的銷售利潤(rùn)平均每天達(dá)到5000元,每臺(tái)冰箱的定價(jià)應(yīng)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定平面內(nèi)點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最小值稱為該點(diǎn)到這個(gè)圖形的最小距離d,點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最大值稱為該點(diǎn)到這個(gè)圖形的最大距離D,定義點(diǎn)A到圖形G的距離跨度為R=D-d

1如圖1,在平面直角坐標(biāo)系xOy,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點(diǎn)到圖形G1的距離跨度

A10的距離跨度______________;

B-, 的距離跨度____________;

C-3,-2的距離跨度____________;

根據(jù)中的結(jié)果猜想到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是______________

2如圖2,在平面直角坐標(biāo)系xOy圖形G2為以D-1,0為圓心,2為半徑的圓,直線y=kx-1上存在到G2的距離跨度為2的點(diǎn)k的取值范圍

3如圖3在平面直角坐標(biāo)系xOy,射線OPy=xx≥0),E是以3為半徑的圓且圓心Ex軸上運(yùn)動(dòng),若射線OP上存在點(diǎn)到E的距離跨度為2,求出圓心E的橫坐標(biāo)xE的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線于對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.

1)如圖1,在ABC中,CD為角平分線,∠A=40°,B=60°,求證:CDABC的完美分割線.

2)在ABC中,∠A=48°CDABC的完美分割線,且ACD為等腰三角形,求∠ACB的度數(shù).

3)如圖2ABC中,AC=2BC=,CDABC的完美分割線,且ACD是以CD為底邊的等腰三角形,求完美分割線CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案