【題目】在等邊△AOB中,將扇形COD按圖1擺放,使扇形的半徑OC、OD分別與OA、OB重合,OA=OB=2,OC=OD=1,固定等邊△AOB不動,讓扇形COD繞點O逆時針旋轉(zhuǎn),線段AC、BD也隨之變化,設(shè)旋轉(zhuǎn)角為α.(0<α≤360°)
(1)當OC∥AB時,旋轉(zhuǎn)角α= 度;
發(fā)現(xiàn):(2)線段AC與BD有何數(shù)量關(guān)系,請僅就圖2給出證明.
應(yīng)用:(3)當A、C、D三點共線時,求BD的長.
拓展:(4)P是線段AB上任意一點,在扇形COD的旋轉(zhuǎn)過程中,請直接寫出線段PC的最大值與最小值.
【答案】(1)60或240;(2) AC=BD,理由見解析;(3)或;(4)PC的最大值=3,PC的最小值=﹣1.
【解析】分析:(1)如圖1中,易知當點D在線段AD和線段AD的延長線上時,OC∥AB,此時旋轉(zhuǎn)角α=60°或240°.
(2)結(jié)論:AC=BD.只要證明△AOC≌△BOD即可.
(3)在圖3、圖4中,分別求解即可.
(4)如圖5中,由題意,點C在以O為圓心,1為半徑的⊙O上運動,過點O作OH⊥AB于H,直線OH交⊙O于C′、C″,線段CB的長即為PC的最大值,線段C″H的長即為PC的最小值.易知PC的最大值=3,PC的最小值=﹣1.
詳解:(1)如圖1中,∵△ABC是等邊三角形,∴∠AOB=∠COD=60°,∴當點D在線段AD和線段AD的延長線上時,OC∥AB,此時旋轉(zhuǎn)角α=60°或240°.
故答案為:60或240;
(2)結(jié)論:AC=BD,理由如下:
如圖2中,∵∠COD=∠AOB=60°,∴∠COA=∠DOB.在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD;
(3)①如圖3中,當A、C、D共線時,作OH⊥AC于H.
在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=,OH=.在Rt△AOH中,AH==,∴BD=AC=CH+AH=.
如圖4中,當A、C、D共線時,作OH⊥AC于H.
易知AC=BD=AH﹣CH=.
綜上所述:當A、C、D三點共線時,BD的長為或;
(4)如圖5中,由題意,點C在以O為圓心,1為半徑的⊙O上運動,過點O作OH⊥AB于H,直線OH交⊙O于C′、C″,線段CB的長即為PC的最大值,線段C″H的長即為PC的最小值.易知PC的最大值=3,PC的最小值=﹣1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,AD⊥BC于點D,BE⊥AC于點E,點F是AB的中點, AD與FE、BE分別交于點G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;② AH=2BD; ③AD·BC=AE·AB; ④2CD2=EH2.其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于A、B兩點,與x軸交于點C,過點A作AH⊥x軸于點H,點O是線段CH的中點,AC=4,cos∠ACH=,點B的坐標為(4,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BCH的面積.
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某段筆直的限速公路上,規(guī)定汽車的最高行駛速度不能超過60km/h(即m/s),交通管理部門在離該公路100m處設(shè)置了一速度檢測點A,在如圖所示的坐標系中,A位于y軸上,測速路段BC在x軸上,點B在A的北偏西60°方向上,點C在點A的北偏東45°方向上.
(1)在圖中直接標出表示60°和45°的角;
(2)寫出點B、點C坐標;
(3)一輛汽車從點B勻速行駛到點C所用時間為15s.請你通過計算,判斷該汽車在這段限速路上是否超速?(本小問中取1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上點A與點B的距離為16個單位長度,點A在原點的左側(cè),到原點的距離為26個單位長度,點B在點A的右側(cè),點C表示的數(shù)與點B表示的數(shù)互為相反數(shù),動點P從A出發(fā),以每秒1個單位的速度向終點C移動,設(shè)移動時間為t秒.
(1)點A表示的數(shù)為________,點B表示的數(shù)為__________,點C表示的數(shù)為__________.
(2)當點P運動到B點時,點Q從A點出發(fā),以每秒點3個單位的速度向C點運動,Q點到達C點后,再立即以同樣的速度返回,運動到終點A.
①在點Q向點C運動過程中,能否追上點P?若能,請求出點Q運動幾秒追上.
②在點Q開始運動后,P、Q兩點之間的距離能否為2個單位?如果能,請求出此時點P表示的數(shù);如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名隊員參加射擊訓(xùn)練,成績分別繪制成下列兩個統(tǒng)計圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(環(huán)) | 中位數(shù)(環(huán)) | 眾數(shù)(環(huán)) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值;
(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊成績,若選派其中一名參賽,你認為應(yīng)選哪名隊員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將7張相同的小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內(nèi),未被覆蓋的部分恰好被分割為兩個長方形,面積分別為S1和S2.已知小長方形紙片的長為a,寬為b,且a>b.
⑴當a=9,b=3,AD=30時,長方形ABCD的面積是 ,S1﹣S2的值為 .
⑵當AD=40時,請用含a、b的式子表示S1﹣S2的值;
⑶若AB長度為定值,AD變長,將這7張小長方形紙片還按照同樣的方式放在新的長方形ABCD內(nèi),而S1﹣S2的值總保持不變,則a、b滿足的什么關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=60°,將△ABC沿對角線AC折疊,點B的對應(yīng)點落在點E處,且點B,A,E在一條直線上,CE交AD于點F,則圖中等邊三角形共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在⊙O上,連接CO并延長交弦AB于點D,,連接AC、OB,若CD=40,AC=.
(1)求弦AB的長;
(2)求sin∠ABO的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com