【題目】如圖,已知,兩點(diǎn)在數(shù)軸上,點(diǎn)表示的數(shù)為-10,點(diǎn)到點(diǎn)的距離是點(diǎn)到點(diǎn)距離的3倍,點(diǎn)以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)向右運(yùn)動(dòng).點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)向右運(yùn)動(dòng)(點(diǎn)、同時(shí)出發(fā))
(1)數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)是______.
(2)經(jīng)過(guò)幾秒,點(diǎn)、點(diǎn)分別到原點(diǎn)的距離相等.
【答案】(1)30(2)秒或秒
【解析】
(1)根據(jù)點(diǎn)A表示的數(shù)為-10,OB=3OA,可得點(diǎn)B對(duì)應(yīng)的數(shù);
(2)分①點(diǎn)M、點(diǎn)N在點(diǎn)O兩側(cè);②點(diǎn)M、點(diǎn)N重合兩種情況討論求解;
(1)∵OB=3OA=30.故B對(duì)應(yīng)的數(shù)是30;(2)設(shè)經(jīng)過(guò)x秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等;
①點(diǎn)M、點(diǎn)N在點(diǎn)O兩側(cè),則10-3x=2x,解得x=2;②點(diǎn)M、點(diǎn)N重合,則3x-10=2x,解得x=10.
所以經(jīng)過(guò)2秒或10秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(-3,2).
(1)直接寫(xiě)出點(diǎn)E的坐標(biāo) ;D的坐標(biāo)
(3)點(diǎn)P是線段CE上一動(dòng)點(diǎn),設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,確定x, y,z之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD,點(diǎn)M,N分別是AB,CD上兩點(diǎn),點(diǎn)G在AB,CD之間.
(1)求證:∠AMG+∠CNG=∠MGN;
(2)如圖②,點(diǎn)E是AB上方一點(diǎn),MF平分∠AME,若點(diǎn)G恰好在MF的反向延長(zhǎng)線上,且NE平分∠CNG,2∠E+∠G=90°,求∠AME的度數(shù);
(3)如圖③,若點(diǎn)P是(2)中的EM上一動(dòng)點(diǎn),PQ平分∠MPQ.NH平分∠PNC,交AB于點(diǎn)H,PJ∥NH,直接寫(xiě)出∠JPQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九(1)班同學(xué)為了解 2011 年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理.請(qǐng)解答以下問(wèn)題:
(1) 把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;
(2) 求月均用水量不超過(guò) 的家庭數(shù)占被調(diào)查家庭總數(shù)的百分比;
(3) 若該小區(qū)有 戶(hù)家庭,根據(jù)調(diào)查數(shù)據(jù)估計(jì),該小區(qū)月均用水量超過(guò) 的家庭大約有多少戶(hù) ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠BAC=90°,其中A(-2,0),B(0,1),則直線BC的函數(shù)表達(dá)式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中直線y=x﹣2與y軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).
(1)求反比例函數(shù)的關(guān)系式;
(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn)C,且△ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號(hào),一艘在港口正東方向的海警船接到求救信號(hào),測(cè)得事故船在它的北偏東37°方向,馬上以40海里每小時(shí)的速度前往救援,
(1)求點(diǎn)C到直線AB的距離;
(2)求海警船到達(dá)事故船C處所需的大約時(shí)間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com