【題目】如圖,在矩形ABCD中,AB=6,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點間距離之和PA+PB的最小值為( )
A.B.C.D.
【答案】A
【解析】
先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關(guān)于直線l的對稱點E,連接AE,BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即可得到PA+PB的最小值.
解:設(shè)△ABP中AB邊上的高是h.
∵S△PAB=S矩形ABCD,
∴ABh=ABAD,
∴h=AD=2,
∴動點P在與AB平行且與AB的距離是2的直線l上,
如圖,作A關(guān)于直線l的對稱點E,連接AE,BE,則BE的長就是所求的最短距離.
在Rt△ABE中,∵AB=6,AE=2+2=4,
∴BE=,
即PA+PB的最小值為.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB為銳角,在射線OA上依次截取A1A2=A2A3=A3A4=…=AnAn+1,在射線OB上依次截取B1B2=B2B3=B3B4=…=BnBn+1,記Sn為△AnBnBn+1的面積(n為正整數(shù)),若S3=7,S4=10,則S2019=( 。
A.4039B.4041C.6055D.6058
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 為滿足社區(qū)居民健身的需要,市政府準(zhǔn)備采購若干套健身器材免費提供給社區(qū),經(jīng)考察,勁松公司有兩種型號的健身器可供選擇.
(1)勁松公司2015年每套型健身器的售價為萬元,經(jīng)過連續(xù)兩年降價,2017年每套售價為 萬元,求每套型健身器年平均下降率 ;
(2)2017年市政府經(jīng)過招標(biāo),決定年內(nèi)采購并安裝勁松公司兩種型號的健身器材共套,采購專項費總計不超過萬元,采購合同規(guī)定:每套型健身器售價為萬元,每套型健身器售價我 萬元.
①型健身器最多可購買多少套?
②安裝完成后,若每套型和型健身器一年的養(yǎng)護費分別是購買價的 和 .市政府計劃支出 萬元進行養(yǎng)護.問該計劃支出能否滿足一年的養(yǎng)護需要?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小元設(shè)計的“作已知角的角平分線”的尺規(guī)作圖過程.
已知:如圖,∠AOB.
求作:∠AOB的角平分線OP.
作法:如圖,
①在射線OA上任取點C;
②作∠ACD=∠AOB;
③以點C為圓心CO長為半徑畫圓,交射線CD于點P;
④作射線OP;
所以射線OP即為所求.
根據(jù)小元設(shè)計的尺規(guī)作圖過程,完成以下任務(wù).
(1)補全圖形;
(2)完成下面的證明:
證明:∵ ∠ACD=∠AOB,
∴ CD∥OB(____________)(填推理的依據(jù)).
∴∠BOP=∠CPO.
又∵ OC=CP,
∴∠COP=∠CPO(____________)(填推理的依據(jù)).
∴∠COP=∠BOP.
∴ OP平分∠AOB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣6mx+9m+1(m≠0).
(1)求拋物線的頂點坐標(biāo);
(2)若拋物線與x軸的兩個交點分別為A和B點(點A在點B的左側(cè)),且AB=4,求m的值.
(3)已知四個點C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若拋物線與線段CD和線段EF都沒有公共點,請直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)
(1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?
(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進行防銹處理,側(cè)面每平方分米的費用為0.5元,底面每平方分米的費用為2元,裁掉的正方形邊長多大時,總費用最低,最低為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=-(m+2)(m為常數(shù)),求當(dāng)m為何值時:
(1)y是x的一次函數(shù)?
(2)y是x的二次函數(shù)?并求出此時縱坐標(biāo)為-8的點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程(組)、不等式(組):
(1).
(2).
(3).
(4).
(5)解不等式組: 并把解集在數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,于,點是弧上的任一點,過點作的切線交于點.連接交于.
(1)求證:;
(2)填空:①當(dāng)_____時,四邊形是正方形;
②當(dāng)_____時,四邊形是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com