【題目】已知、在直線上,,點(diǎn)線段的中點(diǎn),點(diǎn)是直線上的一個動點(diǎn).
(1)若,求的長;
(2)若是線段的中點(diǎn),是的中點(diǎn),求的長.
【答案】(1)的長為:9或19;(2)MN=14
【解析】
(1) 分當(dāng)P在CB上時、當(dāng)P在CB的延長線上時兩種情況進(jìn)行分類討論即可;
(2)分當(dāng)P在AB線上時、當(dāng)P在AB的延長線上時、當(dāng)P在BA的延長線上時三種情況進(jìn)行討論,利用中點(diǎn)的性質(zhì)將MM的和差分別表示出來即可得出答案.
解:(1)∵點(diǎn)線段的中點(diǎn),,
∴
當(dāng)P在CB上時,如圖:
∵
∴CP=BC-CP=14-5=9
當(dāng)P在CB的延長線上時,如圖:
∵
∴CP=BC+BP=14+5=19
∴的長為:9或19
(2)∵M(jìn)為AP的中點(diǎn)
∴
∵N為BP的中點(diǎn)
∴
當(dāng)P在AB線上時,如圖
當(dāng)P在AB的延長線上時,如圖
當(dāng)P在BA的延長線上時,如圖
綜上所述:MM=14
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于方程=1,某同學(xué)解法如下:
解:方程兩邊同乘6,得3x﹣2(x﹣1)=1 ①
去括號,得3x﹣2x﹣2=1 ②
合并同類項(xiàng),得x﹣2=1 ③
解得x=3 ④
∴原方程的解為x=3 ⑤
(1)上述解答過程中的錯誤步驟有 (填序號);
(2)請寫出正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知一次函數(shù)的圖像直線AB經(jīng)過點(diǎn)(0,6)和點(diǎn)(-2,0).
(1)求這個函數(shù)的解析式;
(2)直線AB與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(1,4),B(4,n)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點(diǎn)P是x軸上的一動點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)分別交y軸、x 軸于A、B兩點(diǎn),拋物線過A、B兩點(diǎn).
(1)求這個拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于點(diǎn)M,交這個拋物線于點(diǎn)N.求當(dāng)t 取何值時,MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有1個白球和2個紅球,這些球除顏色外都相同.
(1)攪勻后,從中任意摸出一個球,恰好是紅球的概率是 ;
(2)攪勻后,從中任意摸出一個球,記錄顏色后放回、攪勻,再從中任意摸出一個球.
①求兩次都摸到紅球的概率;
②經(jīng)過了n次“摸球﹣記錄﹣放回”的過程,全部摸到紅球的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在所給的平面直角坐標(biāo)系中描出下列各點(diǎn):①點(diǎn)A在x軸上方,y軸左側(cè),距離x軸4個單位長度,距離y軸2個單位長度;②點(diǎn)B在x軸下方,y軸右側(cè),距離x、y軸都是3個單位長度;③點(diǎn)C在y軸上,位于原點(diǎn)下方,距離原點(diǎn)2個單位長度;④點(diǎn)D在x軸上,位于原點(diǎn)右側(cè),距離原點(diǎn)4個單位長度. 填空:點(diǎn)A的坐標(biāo)為________;點(diǎn)B的坐標(biāo)為________;點(diǎn)B位于第________象限內(nèi);點(diǎn)C的坐標(biāo)為________;點(diǎn)D的坐標(biāo)為________;線段CD的長度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為 2 的正方形 OABC 頂點(diǎn) O 與坐標(biāo)原點(diǎn) O 重合,邊 OA、OC 分別與 x、y 正半軸重合, 在 x 軸上取點(diǎn) P(﹣2,0),將正方形 OABC 繞點(diǎn) O 逆時針旋轉(zhuǎn) a°(0°<a<180°),得到正方形 OA′B′C′,在旋轉(zhuǎn)過程中,使得以 P,A′,B′為頂點(diǎn)的三角形是等腰三角形時,點(diǎn) A′的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,經(jīng)過點(diǎn)A的直線y=﹣x+b與拋物線的另一個交點(diǎn)為D.
(1)若點(diǎn)D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo);
(3)在(1)的條件下,設(shè)點(diǎn)E是線段AD上的一點(diǎn)(不含端點(diǎn)),連接BE.一動點(diǎn)Q從點(diǎn)B出發(fā),沿線段BE以每秒1個單位的速度運(yùn)動到點(diǎn)E,再沿線段ED以每秒個單位的速度運(yùn)動到點(diǎn)D后停止,問當(dāng)點(diǎn)E的坐標(biāo)是多少時,點(diǎn)Q在整個運(yùn)動過程中所用時間最少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com