【題目】如圖,是某座拋物線型的隧道示意圖,已知路面AB寬24米,拋物線最高點C到路面AB的距離為8米,為保護(hù)來往車輛的安全,在該拋物線上距路面AB高為6米的點E,F處要安裝兩盞警示燈,求這兩盞燈的水平距離EF.
【答案】12m.
【解析】
利用待定系數(shù)法求得拋物線的解析式,已知拋物線上距水面AB高為6米的E、F兩點,可知E、F兩點縱坐標(biāo)為6,把y=6代入拋物線解析式,可求E、F兩點的橫坐標(biāo),根據(jù)拋物線的對稱性求EF長.
解:如圖,
以AB所在直線為x軸、線段AB的中垂線為y軸建立直角坐標(biāo)系,由題意知,A(-12,0),B(12,0),C(0,8).
設(shè)過點A、B、C的拋物線解析式為:
y=ax2+8(a<0).
把點B(12,0)的坐標(biāo)代入,得a×122+8=0
解得:a=,
則該拋物線的解析式為:
把y=6代入,得,
解得x1=6,x2=-6.
所以兩盞警示燈之間的水平距離為:EF=|x1-x2|=|6-(-6)|=12(m).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10,AD=6,E為BC上一點,把△CDE沿DE折疊,使點C落在AB邊上的F處,則CE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形ABC的三個頂點都在直徑為10的⊙O上,如果圓心O到BC的距離為3,那么三角形ABC的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線.
(1)該拋物線的對稱軸是直線___________,頂點坐標(biāo)是___________;
(2)選取適當(dāng)?shù)臄?shù)據(jù)填入下表,并在圖中的直角坐標(biāo)系內(nèi)畫出該拋物線的圖像;
(3)根據(jù)圖像回答,有實數(shù)根,此時的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,割線ABC與⊙O相交于B、C兩點,D為⊙O上一點,E為弧BC的中點,OE交BC于F,DE交AC于G,∠ADG=∠AGD.
(1)求證明:AD是⊙D的切線;
(2)若∠A=60°,⊙O的半徑為4,求ED的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設(shè)E點的運動時間為t秒(0≤t<6),連接DE,當(dāng)△BDE是直角三角形時,t的值為
A、2 B、2.5或3.5 C、3.5或4.5 D、2或3.5或4.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為6的⊙O中,正六邊形ABCDEF與正方形AGDH都內(nèi)接于⊙O,則圖中陰影部分的面積為( 。
A. 27﹣9B. 18C. 54﹣18D. 54
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,點位于坐標(biāo)原點O, 在y軸的正半軸上,點在二次函數(shù)第一象限的圖象上,若△,△,△…,都為等邊三角形,則點的坐標(biāo)為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,半徑為1的圓心角為60°的扇形紙片OAB在直線L上向右做無滑動的滾動.且滾動至扇形O′A′B′處,則頂點O所經(jīng)過的路線總長是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com