【題目】如圖,△ABC中,點O為AC邊上的一個動點,過點O作直線MN∥BC,設MN交∠ACB的外角平分線CF于點F,交∠ACB內(nèi)角平分線CE于E.
(1)求證:OE=OF;
(2)當點O運動到何處時,四邊形AECF是矩形,并證明你的結論;
(3)在(2)的條件下,試猜想當△ABC滿足什么條件時使四邊形AECF是正方形,請直接寫出你的結論.
【答案】
(1)
證明:如圖1中,
∵CE平分∠ACB,
∴∠ACE=∠BCE,
∵MN∥BC,
∴∠OEC=∠ECB,
∴∠OEC=∠OCE,
∴OE=OC,
同理,OC=OF,
∴OE=OF.
(2)
結論:當點O運動到AC中點處時,四邊形AECF是矩形.
理由:如圖2中,
如圖AO=CO,EO=FO,
∴四邊形AECF為平行四邊形,
∵CE平分∠ACB,
∴∠ACE= ∠ACB,
同理,∠ACF= ∠ACG,
∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,
∴四邊形AECF是矩形.:
(3)
解:結論:當∠ACB=90°時,四邊形AECF是正方形
理由:∵∠BCA=90°,
∵MN∥BC,
∴∠BCA=∠AOM=90°,
∴AC⊥EF,
∴四邊形AECF是正方形..
【解析】(1)根據(jù)CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根據(jù)等邊對等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一個內(nèi)角是直角的平行四邊形是矩形.(3)利用已知條件及正方形的判定方法解答.
【考點精析】解答此題的關鍵在于理解正方形的判定方法的相關知識,掌握先判定一個四邊形是矩形,再判定出有一組鄰邊相等;先判定一個四邊形是菱形,再判定出有一個角是直角.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,則四邊形ABCD的面積為( )
A.6cm2
B.30cm2
C.24cm2
D.36cm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D.試說明:AC∥DF.
解:∵∠1=∠2(已知),
∠1=∠3(),
∴∠2=∠3(等量代換).
∴∥(同位角相等,兩直線平行).
∴∠C=∠ABD ().
又∵∠C=∠D(已知),
∴∠D=∠ABD(等量代換).
∴AC∥DF().
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點D,E是⊙O上一點,且∠AED=45.
(1)試判斷CD與⊙O的位置關系,并證明你的結論;
(2)若⊙O的半徑為3,sin∠ADE=,求AE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)與y=kx2﹣8x+8的圖象與x軸有交點,則k的取值范圍是( )
A.k<2
B.k<2且k≠0
C.k≤2
D.k≤2且k≠0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:
(1)已知AB∥CD,EF∥MN,∠1=115°,求∠2和∠4的度數(shù);
(2)本題隱含著一個規(guī)律,請你根據(jù)(1)的結果進行歸納,試著用文字表述出來;
(3)利用(2)的結論解答:如果兩個角的兩邊分別平行,其中一角是另一個角的兩倍,求這兩個角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com