【題目】如圖,RtABC,ACB=90°,AC=4,BC=3,動(dòng)點(diǎn)D從點(diǎn)A出發(fā),沿線(xiàn)段AC以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)E同時(shí)從點(diǎn)B出發(fā),以每秒2個(gè)單位的速度沿射線(xiàn)BC方向運(yùn)動(dòng),當(dāng)點(diǎn)D停止時(shí),點(diǎn)E也隨之停止,連結(jié)DE,當(dāng)C. D. E三點(diǎn)不在同一直線(xiàn)上時(shí),EDEC我鄰邊作ECFD,設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t().

(1)用含t的代數(shù)式表示CE的長(zhǎng)度。

(2)當(dāng)F點(diǎn)落在△ABC的內(nèi)部時(shí),求t的取值范圍。

(3)設(shè)ECFD的面積為S(平方單位),求St之間的函數(shù)關(guān)系式。

(4)當(dāng)點(diǎn)FRtABC的一條直角邊的距離是到另一條直角邊距離的2倍時(shí),直接寫(xiě)出ECFD的面積.

【答案】(1)當(dāng)0t<時(shí),CE= 32t;當(dāng)t4時(shí),CE= 2t3;(2)<t<;(3)S;(4)2

【解析】

1)分兩種情形分別求出CE的長(zhǎng)即可;

2)求出點(diǎn)F落在ABAC上的時(shí)間即可解決問(wèn)題.

3)分兩種情形求解即可;

4)分四種情形列出方程求解即可解決問(wèn)題;

(1)由題意,BE=2t,

當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),2t=3,

t=

當(dāng)點(diǎn)D與點(diǎn)C重合時(shí),t=4.

∴當(dāng)0t<時(shí),CE=BCBE=32t.

當(dāng)t4時(shí),CE=BEBC=2t3.

(2)當(dāng)F落在AB上時(shí),tanA=

,

t=

當(dāng)點(diǎn)F落在AC邊上時(shí),點(diǎn)E與點(diǎn)C重合,

t=,

∴當(dāng)點(diǎn)F落在ABC的內(nèi)部時(shí), <t<.

(3)當(dāng)0t<時(shí),S=ECDC=(32t)(4t)=2t11t+12.

當(dāng)<t<4時(shí),S=ECDC=(2t3)(4t)=2t+11t12

綜上所述,S= .

(4)由題意DC=2DFDF=2DC,

則有4t=2(32t),解得t=,此時(shí)S=

32t=2(4t),無(wú)解,不存在,

4t=2(2t3),解得t=2,此時(shí)S=2,

2t3=2(4t),解得t=114,此時(shí)S=

ECFD的面積為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 A、B是線(xiàn)段MN上的兩點(diǎn),MN4,MA1,MB1.以A為中心順 時(shí)針旋轉(zhuǎn)點(diǎn)M,以B為中心逆時(shí)針旋轉(zhuǎn)點(diǎn)N,使MN 兩點(diǎn)重合成一點(diǎn)C,構(gòu)成△ABC,設(shè)ABx.(1)則x的取值范圍是_________;(2)△ABC的最大面積是_________.

C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知,如圖,在平行四邊形ABCD中,E、F是對(duì)角線(xiàn)BD上的兩點(diǎn),且BFDE.求證:AECF;

2)已知,如圖,ABO的直徑,CAO相切于點(diǎn)A.連接COO于點(diǎn)D,CO的延長(zhǎng)線(xiàn)交O于點(diǎn)E.連接BEBD,∠ABD30°,求∠EBO和∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們將使得函數(shù)值為零的自變量的值稱(chēng)為函數(shù)的零點(diǎn)值,此時(shí)的點(diǎn)稱(chēng)為函數(shù)的零點(diǎn).例如,對(duì)于函數(shù),令,可得,我們就說(shuō)1是函數(shù)的零點(diǎn)值,點(diǎn)是函數(shù)的零點(diǎn).

已知二次函數(shù)

1)若函數(shù)有兩個(gè)不重合的零點(diǎn)時(shí),求k的取值范圍;

2)若函數(shù)的兩個(gè)零點(diǎn)都是整數(shù)點(diǎn),求整數(shù)k的值;

3)當(dāng)k<0時(shí),在(2)的條件下,函數(shù)的兩個(gè)零點(diǎn)分別是點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),將二次函數(shù)的圖象在點(diǎn)A,B間的部分(含點(diǎn)A和點(diǎn)B)向左平移個(gè)單位后得到的圖象記為,同時(shí)將直線(xiàn)向上平移個(gè)單位.請(qǐng)結(jié)合圖象回答:當(dāng)平移后的直線(xiàn)與圖象有公共點(diǎn)時(shí),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD與拋物線(xiàn)y=﹣x2+bx+c相交于點(diǎn)A,BD,點(diǎn)C在拋物線(xiàn)的對(duì)稱(chēng)軸上,已知點(diǎn)B(﹣1,0),BC4

1)求拋物線(xiàn)的解析式;

2)求BD的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4,BC=8,B=60,過(guò)平行四邊形的對(duì)稱(chēng)中心點(diǎn)O的一條直線(xiàn)與邊AD、BC分別交于點(diǎn)EF,設(shè)直線(xiàn)EFBC的夾角為α。

1)當(dāng)α的度數(shù)是_________時(shí),四邊形AFCE為菱形;

2)當(dāng)α的度數(shù)是_________時(shí),四邊形AFCE為矩形;

3)四邊形AFCE能否為正方形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的箱子里有四張外形相同的卡片卡片上分別標(biāo)有數(shù)字﹣11,35.摸出一張后,記下數(shù)字,再放回,搖勻后再摸出一張,記下數(shù)字.以第一次得到的放字為橫坐標(biāo),第二次得到的數(shù)字為縱坐標(biāo),得到一個(gè)點(diǎn)則這個(gè)點(diǎn).恰好在直線(xiàn)y=﹣x+4上的概率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AD8,AB4,將此矩形折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,連接BEDF,以B為原點(diǎn)建立平面直角坐標(biāo)系,使BC、BA邊分別在x軸和y軸的正半軸上.

1)試判斷四邊形BFDE的形狀,并說(shuō)明理由;

2)求直線(xiàn)EF的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:

1)寫(xiě)出方程ax2+bx+c=0的兩個(gè)根;

2)寫(xiě)出yx的增大而減小的自變量x的取值范圍;

3)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案