【題目】如圖1,菱形ABCD中,∠B60°,動點(diǎn)P以每秒1個單位的速度自點(diǎn)A出發(fā)沿線段AB運(yùn)動到點(diǎn)B,同時動點(diǎn)Q以每秒2個單位的速度自點(diǎn)B出發(fā)沿折線BCD運(yùn)動到點(diǎn)D.圖2是點(diǎn)P、Q運(yùn)動時,BPQ的面積S隨時間t變化關(guān)系圖象,則a的值是( 。

A.2B.2.5C.3D.2

【答案】D

【解析】

根據(jù)圖1和圖2中的數(shù)據(jù)即可作出判斷.

由圖2得,t4時兩點(diǎn)停止運(yùn)動,

∴點(diǎn)P以每秒1個單位速度從點(diǎn)A運(yùn)動到點(diǎn)B用了4秒,

AB4,

∵點(diǎn)Q運(yùn)動到點(diǎn)C之前和之后,BPQ面積算法不同,即t2時,S的解析式發(fā)生變化

∴圖2中點(diǎn)M對應(yīng)的橫坐標(biāo)為2,此時PAB中點(diǎn),點(diǎn)C與點(diǎn)Q重合,

連接AC

∵菱形ABCD中,ABBC4,∠B60°,

∴△ABC是等邊三角形,

CPAB,BPAB2

CP,

aSBPCP×2×22,

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長為4,E、F、G、H分別是AB、BCCD、DA上的點(diǎn),且AEBFCGDH.設(shè)A、E兩點(diǎn)間的距離為x,四邊形EFGH的面積為y,則yx的函數(shù)圖象可能是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,,點(diǎn)是線段上的一個動點(diǎn),以點(diǎn)為圓心,為半徑作,連接.

(1)當(dāng)經(jīng)過的中點(diǎn)時,的長為_

(2)當(dāng)平分時,判斷的位置關(guān)系.說明理由,并求出的長;

3)如圖2,當(dāng)交于兩點(diǎn),且時,求點(diǎn)的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為1:

(1)求新坡面的坡角∠CAB的度數(shù);

(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前,某校九年級同學(xué)對“新冠疫情下停課不停學(xué)”線上學(xué)習(xí)的家長進(jìn)行問卷調(diào)查,隨機(jī)調(diào)查了若干名家長對線上學(xué)習(xí)的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.反對;D.贊成).并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長;

2)求出圖2中扇形C所對的圓心角度數(shù),并將圖1補(bǔ)充完整;

3)在此次調(diào)查活動中,初三(1)班有A1、A2兩位家長對線上學(xué)習(xí),持基本贊成的態(tài)度,初三(2)班有B1B2兩位學(xué)生家長對線上學(xué)習(xí),也持基本贊成的態(tài)度,現(xiàn)從這4位家長中選2位家長參加學(xué)校組織的家;顒樱昧斜矸ɑ虍嫎錉顖D的方法求出選出的2人來自不同班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】河南省開封市鐵塔始建于公元1049年(北宋皇祐元年),是國家重點(diǎn)保護(hù)文物之一,在900多年中,歷經(jīng)了數(shù)次地震、大風(fēng)、水患而巍然屹立,素有“天下第一塔”之稱.如圖,小明在鐵塔一側(cè)的水平面上一個臺階的底部A處測得塔頂P的仰角為45°,走到臺階頂部B處,又測得塔頂P的仰角為38.7°,已知臺階的總高度BC3米,總長度AC10米,試求鐵塔的高度.(結(jié)果精確到1米,參考數(shù)據(jù):sin38.7°≈0.63,cos38.7°≈0.78tan38.7°≈0.80

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)泰山文化,某校舉辦了泰山詩文大賽活動,從中隨機(jī)抽取部分學(xué)生的比賽成績,根據(jù)成績(成績都高于50分),繪制了如下的統(tǒng)計(jì)圖表(不完整):

組別

分?jǐn)?shù)

人數(shù)

1

90x≤100

8

2

80x≤90

a

3

70x≤80

10

4

60x≤70

b

5

50x≤60

3

請根據(jù)以上信息,解答下列問題:

1)求出a,b的值;

2)計(jì)算扇形統(tǒng)計(jì)圖中5所在扇形圓心角的度數(shù);

3)若該校共有1800名學(xué)生,那么成績高于80分的共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+4與二次函數(shù)y=ax2+c的圖像的一個交點(diǎn)坐標(biāo)為(1,2),另一個交點(diǎn)是該二次函數(shù)圖像的頂點(diǎn)

1)求k,ac的值;

2)過點(diǎn)A0m)(0m4)且垂直于y軸的直線與二次函數(shù)y=ax2+c的圖像相交于B,C兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),記W=OA2+BC2,求W關(guān)于m的函數(shù)解析式,并求W的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykxb的圖象與反比例函數(shù)y (x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(-4,0),與y軸交于點(diǎn)CPBx軸于點(diǎn)B,點(diǎn)A與點(diǎn)B關(guān)于y軸對稱.

(1)求一次函數(shù)、反比例函數(shù)的解析式;

(2)求證:點(diǎn)C為線段AP的中點(diǎn);

(3)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形,如果存在,說明理由并求出點(diǎn)D的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案