【題目】如圖,直線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF
(1)求∠EOB的度數(shù);
(2)若平行移動AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個比值.
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說明理由.
【答案】(1)40°;(2)∠OBC:∠OFC=1:2,是定值;(3)60°
【解析】
(1)根據(jù)兩直線平行,同旁內(nèi)角互補求出∠AOC,然后求出∠EOB=∠AOC,計算即可得解;
(2)根據(jù)兩直線平行,內(nèi)錯角相等可得∠AOB=∠OBC,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠OFC=2∠OBC,從而得解;
(3)根據(jù)三角形的內(nèi)角和定理求出∠COE=∠AOB,從而得到OB、OE、OF是∠AOC的四等分線,再利用三角形的內(nèi)角和定理列式計算即可得解.
解:(1)∵CB∥OA,
∴∠AOC=180°﹣∠C=180°﹣100°=80°,
∵OE平分∠COF,
∴∠COE=∠EOF,
∵∠FOB=∠AOB,
∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°;
(2)∵CB∥OA,
∴∠AOB=∠OBC,
∵∠FOB=∠AOB,
∴∠FOB=∠OBC,
∴∠OFC=∠FOB+∠OBC=2∠OBC,
∴∠OBC:∠OFC=1:2,是定值;
(3)在△COE和△AOB中,
∵∠OEC=∠OBA,∠C=∠OAB,
∴∠COE=∠AOB,
∴OB、OE、OF是∠AOC的四等分線,
∴∠COE=∠AOC=×80°=20°,
∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,
故存在某種情況,使∠OEC=∠OBA,此時∠OEC=∠OBA=60°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,G是線段AB上一點,AC和DG相交于點E.
(1)請先作出∠ABC的平分線BF,交AC于點F;(尺規(guī)作圖,保留作圖痕跡,不寫作法與證明)
(2)然后證明當:AD∥BC,AD=BC,∠ABC=2∠ADG時,DE=BF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形中,,,.是邊的中點,聯(lián)結(jié)、,且.設,.
(1)如果,求的長;
(2)求關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;
(3)聯(lián)結(jié).如果是以邊為腰的等腰三角形,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為1,它的六條對角線又圍成一個正六邊形A2B2C2D2E2F2 , 如此繼續(xù)下去,則正六邊形A4B4C4D4E4F4的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明
(1)如圖,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG∥CD(已知)
∴∠2=
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC∥
∴∠B+ =180°
又∵∠B=50°
∴∠BDE= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(-1,0),B(-3,-3),若BC∥OA,且BC=4OA.
(1)求點C的坐標;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示.現(xiàn)將△ABC平移,使點A變換為點D,點E、F分別是B、C的對應點.
(1)請畫出平移后的△DEF,并求△DEF的面積;
(2)若連接AD、CF,則這兩條線段之間的關(guān)系是________________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列解方程組的方法,回答問題.
解方程組
解:由①﹣②得2x+2y=2即x+y=1③
③×16得16x+16y=16④
②﹣④得x=﹣1,從而可得y=2
∴原方程組的解是
(1)請你仿照上面的解法解方程組;
(2)請大膽猜測關(guān)于x、y的方程組
的解是什么?并利用方程組的解加以驗證.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一副三角板如圖甲放置,其中 , ,斜邊AB=6cm,DC=7cm把三角板DCE繞點C順時針旋轉(zhuǎn)15°得到△D1CE1(如圖乙).這時AB與CD1相交于點O,與D1E1相交于點F .
(1)求 的度數(shù);
(2)求線段AD1的長;
(3)若把三角形D1CE1繞著點 C 順時針再旋轉(zhuǎn)30°得△D2CE2 , 這時點B在△D2CE2的內(nèi)部、外部、還是邊上?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com