【題目】如圖,函數(shù),,,的圖象圍成陰影部分的面積是___________.
【答案】
【解析】
連接AF、BG,根據(jù)題意得陰影部分的面積與平行四邊形AFGB的面積相等,據(jù)此求解即可.
設(shè)直線與兩雙曲線和軸、軸分別相交于B、A、C、H,直線與兩雙曲線和軸分別相交于G、F、E,連接AF、BG、CE,過(guò)A點(diǎn)作軸的垂線與過(guò)B點(diǎn)作軸的垂線相交于點(diǎn)D,如圖,
根據(jù)題意:雙曲線向左平移4個(gè)單位,再向下平移4個(gè)單位得到雙曲線,
∴BD=AD=4,
又∠D=,
∴,
令,則,令,則,,
令,則,,
∴點(diǎn)C、H、E的坐標(biāo)分別為(0,),(0,),(,0),
∴OC=OH=OE=,
又∠COE=∠COH=,
∴,∠HCE=,即CE⊥AB,
∵直線和直線平行,即AB∥FG,
∴.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱(chēng)軸于點(diǎn)E,D是拋物線的頂點(diǎn).
(1)求此拋物線的解析式;
(2)直接寫(xiě)出點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點(diǎn)坐標(biāo);
(4)在平面內(nèi),是否存在點(diǎn)M使點(diǎn)A、B、C、M構(gòu)成平行四邊形,如果存在,直接寫(xiě)出M坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)E是正方形ABCD邊CD上任意點(diǎn),以DE為邊作正方形DEFG,連接BF.點(diǎn)M是線段BF中點(diǎn),射線EM與BC交于點(diǎn)H,連接CM.
(1)請(qǐng)直接寫(xiě)出CM和EM的數(shù)量關(guān)系和位置關(guān)系:__________;
(2)把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,此時(shí)點(diǎn)E、G恰好分別落在線段AD、CD上,如圖2所示,其他條件不變,(1)中的結(jié)論是否成立,請(qǐng)說(shuō)明理由.
(3)若DG=,AB=4.
①把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)45°,此時(shí)點(diǎn)F恰好落在線段CD上,連接EM,如圖3所示,其他條件不變,計(jì)算EM的長(zhǎng)度;
②若把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一周,請(qǐng)直接寫(xiě)出EM的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB是直徑,弦BC于點(diǎn)F,且交于點(diǎn)E,且∠AEC=∠ODB.
(1)判斷直線和的位置關(guān)系,并給出證明;
(2)當(dāng),時(shí),求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一海輪位于燈塔P的西南方向,距離燈塔40了2海里的A處,它沿正東方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東60°方向上的B處,求航程AB的值(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=ax2+bx +3與x軸的交點(diǎn)為A和B,其中點(diǎn)A(-1,0),且點(diǎn)D(2,3)在該拋物線上.
(1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;
(2)點(diǎn)P是線段AB上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),過(guò)點(diǎn)P作PQ⊥x軸交該拋物線于點(diǎn)Q,連接AQ,DQ,記點(diǎn)P的橫坐標(biāo)為t.
①若時(shí),求△面積的最大值;
②若△是以Q為直角頂點(diǎn)的直角三角形時(shí),求所有滿足條件的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花店用3600元按批發(fā)價(jià)購(gòu)買(mǎi)了一批花卉.若將批發(fā)價(jià)降低10%,則可以多購(gòu)買(mǎi)該花卉20盆.市場(chǎng)調(diào)查反映,該花卉每盆售價(jià)25元時(shí),每天可賣(mài)出25盆.若調(diào)整價(jià)格,每盆花卉每漲價(jià)1元,每天要少賣(mài)出1盆.
(1)該花卉每盆批發(fā)價(jià)是多少元?
(2)若每天所得的銷(xiāo)售利潤(rùn)為200元時(shí),且銷(xiāo)量盡可能大,該花卉每盆售價(jià)是多少元?
(3)為了讓利給顧客,該花店決定每盆花卉漲價(jià)不超過(guò)5元,問(wèn)該花卉一天最大的銷(xiāo)售利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用一段長(zhǎng)為30m的籬笆圍成一個(gè)一邊靠墻的矩形菜園(矩形ABCD),墻長(zhǎng)為22m,這個(gè)矩形的長(zhǎng)AB=xm,菜園的面積為Sm2,且AB>AD.
(1)求S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
(2)若要圍建的菜園為100m2時(shí),求該萊園的長(zhǎng).
(3)當(dāng)該菜園的長(zhǎng)為多少m時(shí),菜園的面積最大?最大面積是多少m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了豐富學(xué)生課余生活,開(kāi)展了“第二課堂”活動(dòng),推出了以下四種選修課程:.繪畫(huà);.唱歌;.跳舞;.演講;.書(shū)法.學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且只能選擇其中的一個(gè)課程.學(xué)校隨機(jī)抽查了部分學(xué)生,對(duì)他們選擇的課程情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息解決下列問(wèn)題:
(1)這次抽查的學(xué)生人數(shù)是多少人?
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)求扇形統(tǒng)計(jì)圖中課程所對(duì)應(yīng)扇形的圓心角的度數(shù).
(4)如果該校共有1200名學(xué)生,請(qǐng)你估計(jì)該校選擇課程的學(xué)生約有多少人.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com