【題目】(1)如圖1,若CO⊥AB,垂足為O,OE、OF分別平分∠AOC與∠BOC.求∠EOF的度數(shù);
(2)如圖2,若∠AOC=∠BOD=80°,OE、OF分別平分∠AOD與∠BOC.求∠EOF的度數(shù);
(3)若∠AOC=∠BOD=α,將∠BOD繞點O旋轉(zhuǎn),使得射線OC與射線OD的夾角為β,OE、OF分別平分∠AOD與∠BOC.若α+β≤180°,α>β,則∠EOC= .(用含α與β的代數(shù)式表示)
【答案】(1)90°;(2)80°;(3)
【解析】
試題分析:(1)根據(jù)垂直的定義得到∠AOC=∠BOC=90°,根據(jù)角平分線的定義即可得到結(jié)論;
(2)根據(jù)角平分線的定義得到∠EOD=∠AOD=×(80+β)=40+β,∠COF=∠BOC=×(80+β)=40+β,根據(jù)角的和差即可得到結(jié)論;
(3)如圖2由已知條件得到∠AOD=α+β,根據(jù)角平分線的定義得到∠DOE=(α+β),即可得到結(jié)論.
解:(1)∵CO⊥AB,
∴∠AOC=∠BOC=90°,
∵OE平分∠AOC,
∴∠EOC=∠AOC=×90°=45°,
∵OF平分∠BOC,
∴∠COF=∠BOC=×90°=45°,
∠EOF=∠EOC+∠COF=45°+45°=90°;
(2)∵OE平分∠AOD,
∴∠EOD=∠AOD=×(80+β)=40+β,
∵OF平分∠BOC,
∴∠COF=∠BOC=×(80+β)=40+β,
∠COE=∠EOD﹣∠COD=40+ β﹣β=40﹣β;
∠EOF=∠COE+∠COF=40﹣ β+40+β=80°;
(3)如圖2,∵∠AOC=∠BOD=α,∠COD=β,
∴∠AOD=α+β,
∵OE平分∠AOD,
∴∠DOE=(α+β),
∴∠COE=∠DOE﹣∠COD==,
如圖3,∵∠AOC=∠BOD=α,∠COD=β,
∴∠AOD=α+β,
∵OE平分∠AOD,
∴∠DOE=(α﹣β),
∴∠COE=∠DOE+∠COD=.
綜上所述:,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于實數(shù)p,q,我們用符號min{p,q}表示p,q兩數(shù)中較小的數(shù),如min{1,2}=1,因此,min{﹣ ,﹣ }=;若min{(x﹣1)2 , x2}=1,則x= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結(jié)論正確的個數(shù)是( )
①AE=BF;②AE⊥BF;③sin∠BQP= ;④S四邊形ECFG=2S△BGE .
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知, , ,試說明:BE∥CF.
完善下面的解答過程,并填寫理由或數(shù)學(xué)式:
解:∵ (已知)
∴AE∥ ( 。
∴( 。
∵(已知)
∴ ( 。
∴DC∥AB( 。
∴( )
即
∵(已知)
∴( 。
即
∴BE∥CF( ) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△DEF,點E在BC邊上,點A在DE邊上,邊EF和邊AC相交于點G.如果AE=EC,∠AEG=∠B,那么添加下列一個條件后,仍無法判定△DEF與△ABC一定相似的是( )
A. =
B. =
C. =
D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=90°,以O為頂點、OB為一邊畫∠BOC,然后再分別畫出∠AOC與∠BOC的平分線OM、ON.
(1)在圖1中,射線OC在∠AOB的內(nèi)部.
①若銳角∠BOC=30°,則∠MON= °;
②若銳角∠BOC=n°,則∠MON= °.
(2)在圖2中,射線OC在∠AOB的外部,且∠BOC為任意銳角,求∠MON的度數(shù).
(3)在(2)中,“∠BOC為任意銳角”改為“∠BOC為任意鈍角”,其余條件不變,(圖3),求∠MON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,點M是CE的中點,連接BM.
(1)如圖①,點D在AB上,連接DM,并延長DM交BC于點N,可探究得出BD與BM的數(shù)量關(guān)系為______________;
(2)如圖②,點D不在AB上,(1)中的結(jié)論還成立嗎?如果成立,請證明;如果不成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問題: 如圖1,將銳角三角形紙片ABC(BC>AC)經(jīng)過兩次折疊,得到邊AB,BC,CA上的點D,E,F(xiàn).使得四邊形DECF恰好為菱形.
小明的折疊方法如下:
如圖2,(1)AC邊向BC邊折疊,使AC邊落在BC邊上,得到折痕交AB于D; (2)C點向AB邊折疊,使C點與D點重合,得到折痕交BC邊于E,交AC邊于F.
老師說:“小明的作法正確.”
請回答:小明這樣折疊的依據(jù)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com