精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知△ABC和△DEF,點E在BC邊上,點A在DE邊上,邊EF和邊AC相交于點G.如果AE=EC,∠AEG=∠B,那么添加下列一個條件后,仍無法判定△DEF與△ABC一定相似的是(
A. =
B. =
C. =
D. =

【答案】C
【解析】解:當 = 時,則 = ,而∠B=∠AEG,所以△ABC∽△EDF; 當 = ,則 = ,而∠DEF=∠AEG,所以△DEF∽△AEG,又因為AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF;
= ,則 = ,而∠DEF=∠AEG,所以△DEF∽△AEG,又因為AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF.
故選C.
【考點精析】解答此題的關鍵在于理解相似三角形的判定的相關知識,掌握相似三角形的判定方法:兩角對應相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應成比例且夾角相等,兩三角形相似(SAS);三邊對應成比例,兩三角形相似(SSS).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】現在,蘇寧商場進行促銷活動,出售一種優(yōu)惠購物卡(注:此卡只作為購物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標價的8折購物.

(1)顧客購買多少元金額的商品時,買卡與不買卡花錢相等?在什么情況下購物合算?

(2)小張要買一臺標價為3500元的冰箱,如何購買合算?小張能節(jié)省多少元錢?

(3)小張按合算的方案,把這臺冰箱買下,如果商場還能盈利25%,這臺冰箱的進價是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AD是等腰△ABC底邊BC上的高,sinB= ,點E在AC上,且AE:EC=2:3,則tan∠ADE=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在四邊形ABCD中,∠ABC=90°,∠CAB=∠CAD=22.5°,E在AB上,且∠DCE=67.5°,DE⊥AB于E,若AE=1,線段BE的長為____________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知A,B分別為數軸上的兩點,點A表示的數是﹣30,點B表示的數是50.

(1)請寫出線段AB中點M表示的數是   

(2)現有一只螞蟻P從點B出發(fā),以每秒3個單位長度的速度沿數軸向左移動,同時另一只螞蟻Q恰好從點A出發(fā),以每秒2個單位長度的速度沿數軸向右移動,設兩只螞蟻在數軸上的點C相遇.

①求A、B兩點間的距離;

②求兩只螞蟻在數軸上的點C相遇時所用的時間;

③求點C對應的數是多少?

(3)若螞蟻P從點B出發(fā),以每秒3個單位長度的速度沿數軸向左運動,同時另一只螞蟻恰好從A點出發(fā),以每秒2個單位長度的速度沿數軸也向左運動,設兩只螞蟻在數軸上的D點相遇,求D點表示的數是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖1,若COAB,垂足為O,OE、OF分別平分AOCBOC.求EOF的度數;

(2)如圖2,若AOC=BOD=80°,OE、OF分別平分AODBOC.求EOF的度數;

(3)若AOC=BOD=α,將BOD繞點O旋轉,使得射線OC與射線OD的夾角為β,OE、OF分別平分AODBOC.若α+β≤180°,α>β,則EOC= .(用含α與β的代數式表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,兩個形狀、大小完全相同的含有30゜60゜的三角板如圖放置,PAPB與直線MN重合,且三角板PAC,三角板PBD均可以繞點P逆時針旋轉

1試說明:DPC=90゜;

2如圖2,若三角板PAC的邊PA從PN處開始繞點P逆時針旋轉一定角度,PF平分APD,PE平分CPD,求EPF;

3如圖3,若三角板PAC的邊PA從PN處開始繞點P逆時針旋轉,轉速為3゜/秒,同時三角板PBD的邊PB從PM處開始繞點P逆時針旋轉,轉速為2゜/秒,在兩個三角板旋轉過程中PC轉到與PM重合時,兩三角板都停止轉動,以下兩個結論為定值;②∠BPN+CPD為定值,請選出正確的結論,并說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:拋物線y=ax2+bx﹣3經過點A(7,﹣3),與x軸正半軸交于點B(m,0)、C(6m、0)兩點,與y軸交于點D.

(1)求m的值;
(2)求這條拋物線的表達式;
(3)點P在拋物線上,點Q在x軸上,當∠PQD=90°且PQ=2DQ時,求點P、Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,O為直線AB上一點,過點O作射線OC,AOC=30°,將一直角三角板(∠M=30°)的直角頂點放在點O處,一邊ON在射線OA上,另一邊OMOC都在直線AB的上方.

(1)將圖1中的三角板繞點O以每秒的速度沿順時針方向旋轉一周.如圖2,經過t秒后OM恰好平分∠BOC,則t=   (直接寫結果)

(2)(1)問的基礎上,若三角板在轉動的同時,射線OC也繞O點以每秒的速度沿順時針方向旋轉一周,如圖3,那么經過多少秒后OC平分∠MON?請說明理由;

(3)(2)問的基礎上,那么經過多少秒∠MOC=36°?請說明理由.

查看答案和解析>>

同步練習冊答案