【題目】如圖1,兩個形狀、大小完全相同的含有30゜60゜的三角板如圖放置,PA、PB與直線MN重合,且三角板PAC,三角板PBD均可以繞點P逆時針旋轉(zhuǎn)

1試說明:DPC=90゜;

2如圖2,若三角板PAC的邊PA從PN處開始繞點P逆時針旋轉(zhuǎn)一定角度,PF平分APD,PE平分CPD,求EPF;

3如圖3,若三角板PAC的邊PA從PN處開始繞點P逆時針旋轉(zhuǎn),轉(zhuǎn)速為3゜/秒,同時三角板PBD的邊PB從PM處開始繞點P逆時針旋轉(zhuǎn),轉(zhuǎn)速為2゜/秒,在兩個三角板旋轉(zhuǎn)過程中PC轉(zhuǎn)到與PM重合時,兩三角板都停止轉(zhuǎn)動,以下兩個結(jié)論為定值;②∠BPN+CPD為定值,請選出正確的結(jié)論,并說明理由

【答案】1證明見解析;23正確,不正確,證明見解析

【解析】

試題分析:1利用含有、的三角板得出,進(jìn)而求出即可;

2設(shè),則,進(jìn)而利用求出即可;

3首先得出正確,設(shè)運動時間為秒,則,表示出的度數(shù)即可得出答案

試題解析:1,

2設(shè),則

3正確設(shè)運動時間為秒,則,

由此可以得出的值隨著時間在變化,不為定值,所以不正確

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=4,AD=5,E為射線BC上一點,DFAEF,連結(jié)DE.

(1)當(dāng)E在線段BC上時

①若DE=5,求BE的長;

②若CE=EF,求證:AD=AE;

(2)連結(jié)BF,在點E的運動過程中:

①當(dāng)ABF是以AB為底的等腰三角形時,求BE的長;

②記ADF的面積為S1,記DCE的面積為S2,當(dāng)BFDE時,請直接寫出S1:S2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園安全”受到全社會的廣泛關(guān)注,綿陽市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為
(2)請補(bǔ)全條形統(tǒng)計圖;
(3)若該中學(xué)共有學(xué)生3000人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對校園安全知識達(dá)到了“了解”程度的3個女生和2個男生中隨機(jī)抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC和△DEF,點E在BC邊上,點A在DE邊上,邊EF和邊AC相交于點G.如果AE=EC,∠AEG=∠B,那么添加下列一個條件后,仍無法判定△DEF與△ABC一定相似的是(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級全體同學(xué)參加了某項捐款活動,隨機(jī)抽查了部分同學(xué)捐款的情況統(tǒng)計如圖所示.

(1)本次共抽查學(xué)生________人,并將條形圖補(bǔ)充完整;

(2)捐款金額的眾數(shù)是________,平均數(shù)是________,中位數(shù)為________.

(3)在八年級600名學(xué)生中,捐款20元及以上(含20元)的學(xué)生估計有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把正整數(shù)1,2,3,4,……,2009排列成如圖所示的一個表

(1)用一正方形在表中隨意框住4個數(shù),把其中最小的數(shù)記為x,另三個數(shù)用含x的式子表示出來,從小到大依次是 , 。

(2)當(dāng)被框住的4個數(shù)之和等于416時,x的值是多少?

(3)被框住的4個數(shù)之和能否等于622?如果能,請求出此時x的值;如果不能,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】濰坊到濟(jì)南的距離約為210km,小劉開著小轎車,小張開著大貨車,都從濰坊去濟(jì)南,小劉比小張晚出發(fā)1小時,最后兩車同時到達(dá)濟(jì)南,已知小轎車的速度是大貨車速度的1.5倍.
(1)求小轎車和大貨車的速度各是多少?(列方程解答)
(2)當(dāng)小劉出發(fā)時,求小張離濟(jì)南還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長CA至點E,使AE=AC;延長CB至點F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點N.
(1)求證:AD=AF;
(2)試判斷四邊形ABNE的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案