【題目】如圖,正方形ABCD邊長為1,連接AC,AE平分∠CAD,交BC的延長線于點E,FAAE,交CE于點F,則EF的長為____.

【答案】2

【解析】

利用正方形的性質和勾股定理可得AC的長,由角平分線的性質和平行線的性質可得∠CAE=E,易得CE=CA,由FAAE,可得∠FAC=F,易得CF=AC,可得EF的長.

解:∵四邊形ABCD為正方形,且邊長為1

AC=,

AE平分∠CAD

∴∠CAE=DAE,

ADCE,

∴∠DAE=E,

∴∠CAE=E

CE=CA=,

FAAE

∴∠FAC+CAE=90°,∠F+E=90°,

∴∠FAC=F,

CF=AC=,

EF=CF+CE=+=2.

故答案為:2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:給定兩個不等式組,若不等式組的任意一個解,都是不等式組的一個解,則稱不等式組為不等式組的“子集”例如:不等式組:是:的“子集”.

1)若不等式組:,,其中不等式組_________是不等式組的“子集”(填);

2)若關于的不等式組是不等式組的“子集”,則的取值范圍是________;

3)已知為互不相等的整數(shù),其中,,下列三個不等式組:,,滿足:的“子集”且的“子集”,則的值為__________;

4)已知不等式組有解,且是不等式組的“子集”,請寫出,滿足的條件:________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCBDE都是等邊三角形,且A,E,D三點在一直線上.請你說明DA﹣DB=DC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將正方形對折后展開(圖④是連續(xù)兩次對折后再展開),再按圖示方法折疊,能夠得到一個直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的半徑為2,AB為直徑,CD為弦.AB與CD交于點M,將 沿CD翻折后,點A與圓心O重合,延長OA至P,使AP=OA,連接PC

(1)求CD的長;
(2)求證:PC是⊙O的切線;
(3)點G為 的中點,在PC延長線上有一動點Q,連接QG交AB于點E.交 于點F(F與B、C不重合).問GEGF是否為定值?如果是,求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為a的正方形,點G,E分別是邊AB,BC的中點,∠AEF=90°,且EF交正方形外角的平分線CF于點F.

(1)證明:∠BAE=FEC;

(2)證明:AGE≌△ECF;

(3)求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=3,AC= ,AB的垂直平分線ED交BC的延長線于D點,垂足為E,則sin∠CAD=( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,A,B,C的對邊分別為a、b、c,下列說法中錯誤的是

A.如果CB=A,則ABC是直角三角形,且C=90;

B.如果,則ABC是直角三角形,且C=90

C.如果(c+a)( c-a)=,則ABC是直角三角形,且C=90

D.如果ABC325,則ABC是直角三角形,且C=90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1為深50cm的圓柱形容器,底部放入一個長方體的鐵塊,現(xiàn)在以一定的速度向容器內(nèi)注水,圖2為容器頂部離水面的距離ycm)隨時間t(分鐘)的變化圖象,則( )

A. 注水的速度為每分鐘注入cm高水位的水

B. 放人的長方體的高度為30cm

C. 該容器注滿水所用的時間為21分鐘

D. 此長方體的體積為此容器的體積的0.35.

查看答案和解析>>

同步練習冊答案