【題目】在每個(gè)小正方形的邊長為1的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),頂點(diǎn)都是格點(diǎn)的三角形稱為格點(diǎn)三角形.如圖,已知RtABC6×6網(wǎng)格圖形中的格點(diǎn)三角形,則該圖中所有與RtABC相似的格點(diǎn)三角形中.面積最大的三角形的斜邊長是_____

【答案】5

【解析】

根據(jù)相似三角形的性質(zhì)確定兩直角邊的比值為12,以及6×6網(wǎng)格圖形中,最長線段為6,進(jìn)行嘗試,可確定、、為邊的這樣一組三角形滿足條件.

解:∵在RtABC中,AC=1,BC=2

AB=,ACBC=12,

∴與RtABC相似的格點(diǎn)三角形的兩直角邊的比值為12

若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網(wǎng)格圖形中,最長線段為6,但此時(shí)畫出的直角三角形為等腰直角三角形,從而畫不出端點(diǎn)都在格點(diǎn)且長為8的線段,故最短直角邊長應(yīng)小于4,在圖中嘗試,可畫出DE=,EF=2DF=5的三角形,

===,

∴△ABC∽△DEF

∴∠DEF=∠C=90°,

∴此時(shí)DEF的面積為:×2÷2=10DEF為面積最大的三角形,其斜邊長為:5

故答案為:5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)PBA的延長線上,PAAO,PD與⊙O相切于點(diǎn)DBCABPD的延長線于點(diǎn)C,若⊙O的半徑為1,則BC的長是( 。

A.1.5B.2C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018·洛寧縣模擬)如圖1,正△ABC的邊長為4,點(diǎn)PBC邊上的任意一點(diǎn),且∠APD=60°,PDAC于點(diǎn)D,設(shè)線段PB的長度為x,圖1中某線段的長度為y,yx的函數(shù)關(guān)系的大致圖象如圖2,則這條線段可能是圖1中的(

1 2

A.線段ADB.線段APC.線段PDD.線段CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,,點(diǎn)EBC的中點(diǎn),以CD為直徑在正方形外部作半圓CFD,點(diǎn)F為半圓的中點(diǎn),連接,圖中陰影部分的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象相交于點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn).

1)求反比例函數(shù)的表達(dá)式;

2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個(gè)交點(diǎn)為,連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC中,ACBCm,DAB邊上的一點(diǎn),將∠B沿著過點(diǎn)D的直線折疊,使點(diǎn)B落在AC邊的點(diǎn)P處(不與點(diǎn)A,C重合),折痕交BC邊于點(diǎn)E

1)特例感知 如圖1,若∠C60°DAB的中點(diǎn),求證:APAC

2)變式求異 如圖2,若∠C90°,m6AD7,過點(diǎn)DDHAC于點(diǎn)H,求DHAP的長;

3)化歸探究 如圖3,若m10,AB12,且當(dāng)ADa時(shí),存在兩次不同的折疊,使點(diǎn)B落在AC邊上兩個(gè)不同的位置,請直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E在邊AB上,BE1,∠DAM45°,點(diǎn)F在射線AM上,且AF,過點(diǎn)FAD的平行線交BA的延長線于點(diǎn)H,CFAD相交于點(diǎn)G,連接EC、EG、EF.下列結(jié)論:①ECF的面積為;②AEG的周長為8;③EG2DG2+BE2;其中正確的是( 。

A.①②③B.①③C.①②D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B、C重合),,DEAC于點(diǎn)E,且.下列結(jié)論:①;②當(dāng)時(shí),全等;③為直角三角形時(shí),BD等于8.其中正確的有__________.(選填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EBC邊上,連接AE,DAE的平分線AGCD邊交于點(diǎn)G,與BC的延長線交于點(diǎn)F.設(shè)λλ0).

1)若AB2,λ1,求線段CF的長.

2)連接EG,若EGAF

求證:點(diǎn)GCD邊的中點(diǎn).

λ的值.

查看答案和解析>>

同步練習(xí)冊答案