【題目】如圖,拋物線與軸交于A、B兩點(diǎn),與軸交于點(diǎn)C,拋物線的對稱軸交軸于點(diǎn)D,已知點(diǎn)A(-1,0),點(diǎn)C(0,2).
(1)求拋物線的函數(shù)解析式;
(2)線段BC上有一動(dòng)點(diǎn)P,過點(diǎn)P作軸的平行線,交拋物線于點(diǎn)Q,求線段PQ的最大值;
(3)若點(diǎn)E在軸上,點(diǎn)F在拋物線上.是否存在以C、D、E、F為頂點(diǎn)且以CD為一邊的平行四邊形?若存在,請你求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)當(dāng)a=2時(shí),PQ有最大值2;(3) 存在3個(gè)點(diǎn)符合題意,坐標(biāo)分別是F1()、F2()、F3(3,2).
【解析】分析:(1)將點(diǎn)A、C坐標(biāo)代入求出函數(shù)解析式;
(2)先求出直線AB的函數(shù)解析式,然后設(shè)點(diǎn)P坐標(biāo)為(a,b),并求出對應(yīng)的點(diǎn)Q的坐標(biāo),然后求出線段PQ的最大值;
(3)本題應(yīng)分情況討論:
①將CD平移,令C點(diǎn)落在x軸(即E點(diǎn))、D點(diǎn)落在拋物線(即F點(diǎn))上,可根據(jù)平行四邊形的性質(zhì),得出F點(diǎn)縱坐標(biāo),代入拋物線的解析式中即可求得F點(diǎn)坐標(biāo);
②過C作x軸的平行線,與拋物線的交點(diǎn)符合F點(diǎn)的要求,此時(shí)F、C的縱坐標(biāo)相同,代入拋物線的解析式中即可求出F點(diǎn)坐標(biāo).
詳解:(1)∵拋物線過點(diǎn)A(-1,0),C(0,2),
∴.解得.
∴函數(shù)解析式為:.
(2)由(1)得,,
令
解得x=-1或x=4.∴A(-1,0)、B(4,0).
設(shè)直線BC解析式為y=kx+b,它過點(diǎn)B(4,0)、C(0,2),
則有,解得.
∴直線BC解析式為.
設(shè)點(diǎn)P橫坐標(biāo)為a,則點(diǎn)P縱坐標(biāo)為.
∵PQ∥y軸,
∴點(diǎn)Q的橫坐標(biāo)為a,縱坐標(biāo)為.
∴PQ=-()
==
∵,∴其圖象開口向下,有最大值.
∴當(dāng)a=2時(shí),PQ有最大值2.
(3)如圖所示.
①平移直線CD交x軸于點(diǎn)E,交x軸下方的拋物線于點(diǎn)F.
當(dāng)CD=E1F1時(shí),四邊形CDEF為平行四邊形.
∵C(0,2),∴設(shè)F(x,-2),
代入解析式得:.
解得.
此時(shí)存在點(diǎn)F1()、F2()
②過點(diǎn)C作CF3∥x軸交拋物線于點(diǎn)F3,過點(diǎn)F3作F3E3∥CD交x
軸于點(diǎn)E3,此時(shí)四邊形CDE3F3為平行四邊形.
此時(shí)F3縱坐標(biāo)為2,將縱坐標(biāo)代入函數(shù)解析式得
.
解得:x=0或x=3.
此時(shí)存在點(diǎn)F3(3,2).
綜上所述,存在3個(gè)點(diǎn)符合題意,坐標(biāo)分別是F1()、F2()、F3(3,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,各地采取價(jià)格調(diào)控手段達(dá)到節(jié)約用水的目的,某市規(guī)定如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水量不超過立方米時(shí),水費(fèi)按每立方米元收費(fèi),超過立方米時(shí),不超過的部分每立方米仍按元收費(fèi),超過的部分每立方米按元收費(fèi),該市某戶今年月份的用水量和所交水費(fèi)如下表所示:
月份 | 用水量() | 收費(fèi)(元) |
設(shè)某戶每月用水量(立方米),應(yīng)交水費(fèi)(元)
求的值,當(dāng)時(shí),分別寫出與的函數(shù)關(guān)系式.
若該戶月份用水量為立方米,求該月份水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,C城市在A城市正東方向,現(xiàn)計(jì)劃在A,C兩城市間修建一條高速鐵路(即線段AC),經(jīng)測量,森林保護(hù)區(qū)的中心P在城市A的北偏東60°方向上,在線段AC上距A城市120 km的B處測得P在北偏東30°方向上,已知森林保護(hù)區(qū)是以點(diǎn)P為圓心,100 km為半徑的圓形區(qū)域,請問計(jì)劃修建的這條高速鐵路是否穿越保護(hù)區(qū),為什么?(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于0.000 002 5 m的顆粒物,將0.000 002 5用科學(xué)記數(shù)法表示為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)律探究,觀察下列等式:
第1個(gè)等式:
第2個(gè)等式:
第3個(gè)等式:
第4個(gè)等式:
請回答下列問題:
(1)按以上規(guī)律寫出第5個(gè)等式:= ___________ = ___________
(2)用含n的式子表示第n個(gè)等式:= ___________ = ___________(n為正整數(shù))
(3)求
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張和同學(xué)相約“五一”節(jié)到離家2400米的電影院看電影,到電影院后,發(fā)現(xiàn)電影票忘帶了,此時(shí)離電影開始還有25分鐘,于是他跑步回家,拿到票后立刻找到一輛“共享單車”原路趕回電影院,已知小張騎車的時(shí)間比跑步的時(shí)間少用了4分鐘,騎車的平均速度是跑步的平均速度的1.5倍.
(1)求小張跑步的平均速度;
(2)如果小張?jiān)诩胰∑焙蛯ふ?/span>“共享單車”共用了6分鐘,他能否在電影開始前趕到電影院?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BP平分∠ABC,D為BP上一點(diǎn),E,F分別在BA,BC上,且滿足DE=DF,若∠BED=140°,則∠BFD的度數(shù)是( )
A. 40°B. 50°C. 60°D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探究:哪些特殊的角可以用一副三角板畫出?
在①,②,③,④中,小明同學(xué)利用一副三角板畫不出來的特殊角是_________;(填序號(hào))
(2)在探究過程中,愛動(dòng)腦筋的小明想起了圖形的運(yùn)動(dòng)方式有多種.如圖,他先用三角板畫出了直線,然后將一副三角板拼接在一起,其中角()的頂點(diǎn)與角()的頂點(diǎn)互相重合,且邊、都在直線上.固定三角板不動(dòng),將三角板繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)一個(gè)角度,當(dāng)邊與射線第一次重合時(shí)停止.
①當(dāng)平分時(shí),求旋轉(zhuǎn)角度;
②是否存在?若存在,求旋轉(zhuǎn)角度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,點(diǎn)A、B分別在x軸正半軸、y軸正半軸上,AO=BO,△ABO的面積為2.
(1)求點(diǎn)A的坐標(biāo);
(2)點(diǎn)C、D分別在x軸負(fù)半軸、y軸正半軸上(D在B點(diǎn)上方),AD=BC,連接CD交AB延長線于E,設(shè)點(diǎn)E橫坐標(biāo)為t,△BCE的面積為S,求S與t的函數(shù)關(guān)系;
(3)在(2)的條件下,點(diǎn)F為BE中點(diǎn),連接OF交BC于G,當(dāng)∠CGO=90°時(shí),求點(diǎn)D坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com