【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,各地采取價(jià)格調(diào)控手段達(dá)到節(jié)約用水的目的,某市規(guī)定如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水量不超過立方米時(shí),水費(fèi)按每立方米元收費(fèi),超過立方米時(shí),不超過的部分每立方米仍按元收費(fèi),超過的部分每立方米按元收費(fèi),該市某戶今年月份的用水量和所交水費(fèi)如下表所示:
月份 | 用水量() | 收費(fèi)(元) |
設(shè)某戶每月用水量(立方米),應(yīng)交水費(fèi)(元)
求的值,當(dāng)時(shí),分別寫出與的函數(shù)關(guān)系式.
若該戶月份用水量為立方米,求該月份水費(fèi)多少元?
【答案】(1)y=6x-27;(2)元.
【解析】
(1)依照題意,當(dāng)x≤6時(shí),y=ax;當(dāng)x>6時(shí),y=6a+c(x-6),分別把對應(yīng)的x,y值代入求解可得解析式;
(2)將x=8代入(1)題中x>6的函數(shù)關(guān)系式,求出y的值即可.
解:(1)當(dāng)時(shí),設(shè),
時(shí),,,
,
當(dāng)時(shí),與的函數(shù)關(guān)系式為,
當(dāng)時(shí),設(shè),
時(shí),,,
,
當(dāng)時(shí), 與的函數(shù)關(guān)系式為y=6x-27;
(2)當(dāng)時(shí),,
該戶11月份水費(fèi)是元.
故答案為:(1)y=6x-27;(2)元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價(jià)分別為20元、18元,這兩種菜品每天的營業(yè)額共為1120元,總利潤為280元.
(1)該店每天賣出這兩種菜品共多少份?
(2)該店為了增加利潤,準(zhǔn)備降低A種菜品的售價(jià),同時(shí)提高B種菜品的售價(jià),售賣時(shí)發(fā)現(xiàn),A種菜品售價(jià)每降0.5元可多賣1份;B種菜品售價(jià)每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料并解決問題:
(1)數(shù)學(xué)課上,老師提出如下問題:
觀察下列算式:
;
;
…
若字母表示自然數(shù),用含的式子表示觀察得到的規(guī)律是 ;
(2)小云同學(xué)解決完老師提出的問題后,又繼續(xù)研究,發(fā)現(xiàn):
①當(dāng)表示負(fù)整數(shù)且時(shí),上述規(guī)律仍舊成立;
②當(dāng)表示分?jǐn)?shù)且時(shí),上述規(guī)律仍舊成立.
請你對小云的兩個(gè)發(fā)現(xiàn)進(jìn)行驗(yàn)證,每個(gè)發(fā)現(xiàn)舉出一個(gè)算式;
(3)請你參照小云同學(xué)的研究思路,進(jìn)行猜想,驗(yàn)證、歸納,當(dāng)時(shí), (用含的代數(shù)式表示);
(4)進(jìn)一步進(jìn)行猜想、驗(yàn)證、歸納,當(dāng)(為有理數(shù))時(shí), (用含,,的代數(shù)式表示)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠按用戶的月需求量(件)完成一種產(chǎn)品的生產(chǎn),其中.每件的售價(jià)為18萬元,每件的成本(萬元)是基礎(chǔ)價(jià)與浮動(dòng)價(jià)的和,其中基礎(chǔ)價(jià)保持不變,浮動(dòng)價(jià)與月需求量(件)成反比.經(jīng)市場調(diào)研發(fā)現(xiàn),月需求量與月份(為整數(shù),)符合關(guān)系式(為常數(shù)),且得到了表中的數(shù)據(jù).
月份(月) | 1 | 2 |
成本(萬元/件) | 11 | 12 |
需求量(件/月) | 120 | 100 |
(1)求與滿足的關(guān)系式,請說明一件產(chǎn)品的利潤能否是12萬元;
(2)求,并推斷是否存在某個(gè)月既無盈利也不虧損;
(3)在這一年12個(gè)月中,若第個(gè)月和第個(gè)月的利潤相差最大,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)科代表小芳對本年級同學(xué)參加課外興趣小組活動(dòng)情況進(jìn)行隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查數(shù)據(jù)小芳同學(xué)還制作了參加課外興趣小組活動(dòng)情況的兩個(gè)統(tǒng)計(jì)圖(見下圖)
(1)此次被調(diào)查的人數(shù)是多少?
(2)將圖②補(bǔ)充完整;
(3)求出圖①中表示“寫作”興趣小組的扇形圓心角度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,頂點(diǎn)是原點(diǎn),頂點(diǎn)在軸上,頂點(diǎn)的坐標(biāo)為,,,點(diǎn)從點(diǎn)出發(fā),以的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)同時(shí)出發(fā),以的速度向點(diǎn)運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng);從運(yùn)動(dòng)開始,設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為.
求直線的函數(shù)解析式;
當(dāng)為何值時(shí),四邊形是矩形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形紙片ABCD的兩邊AB:BC=2:1,過點(diǎn)B折疊紙片,使點(diǎn)A落在邊CD上的點(diǎn)F處,折痕為BE.若AB的長為4,則EF的長為( 。
A. 8-4B. 2C. 4 6D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E,F分別是AC,BC上的點(diǎn),且滿足DE⊥EF,垂足為點(diǎn)E,連接DF.
(1)求∠EDF= (填度數(shù));
(2)延長DE交AB于點(diǎn)G,連接FG,如圖2,猜想AG,GF,FC三者的數(shù)量關(guān)系,并給出證明;
(3)①若AB=6,G是AB的中點(diǎn),求△BFG的面積;
②設(shè)AG=a,CF=b,△BFG的面積記為S,試確定S與a,b的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于A、B兩點(diǎn),與軸交于點(diǎn)C,拋物線的對稱軸交軸于點(diǎn)D,已知點(diǎn)A(-1,0),點(diǎn)C(0,2).
(1)求拋物線的函數(shù)解析式;
(2)線段BC上有一動(dòng)點(diǎn)P,過點(diǎn)P作軸的平行線,交拋物線于點(diǎn)Q,求線段PQ的最大值;
(3)若點(diǎn)E在軸上,點(diǎn)F在拋物線上.是否存在以C、D、E、F為頂點(diǎn)且以CD為一邊的平行四邊形?若存在,請你求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com