【題目】關(guān)于x的一元二次方程ax2﹣3x﹣1=0的兩個(gè)不相等的實(shí)數(shù)根都在﹣1和0之間(不包括﹣1和0),則a的取值范圍是 .
【答案】 <a<﹣2
【解析】解:∵關(guān)于x的一元二次方程ax2﹣3x﹣1=0的兩個(gè)不相等的實(shí)數(shù)根
∴△=(﹣3)2﹣4×a×(﹣1)>0,
解得:a>
設(shè)f(x)=ax2﹣3x﹣1,如圖,
∵實(shí)數(shù)根都在﹣1和0之間,
∴﹣1 ,
∴a ,
且有f(﹣1)<0,f(0)<0,
即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,
解得:a<﹣2,
∴ <a<﹣2,
所以答案是: <a<﹣2.
【考點(diǎn)精析】掌握拋物線與坐標(biāo)軸的交點(diǎn)是解答本題的根本,需要知道一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在Rt△ABC中,AB=3,AC=4,BC=5,若直線EF垂直平分BC,請(qǐng)你利用尺規(guī)畫出直線EF;
(2)若點(diǎn)P在(1)中BC的垂直平分線EF上,請(qǐng)直接寫出PA+PB的最小值,回答PA+PB取最小值時(shí)點(diǎn)P的位置并在圖中標(biāo)出來;
解:PA+PB的最小值為 ,PA+PB取最小值時(shí)點(diǎn)P的位置是 ;
(3)如圖2,點(diǎn)M,N分別在直線AB兩側(cè),在直線AB上找一點(diǎn)Q,使得∠MQB=∠NQB.要求畫圖,并簡要敘述確定點(diǎn)Q位置的步驟(無需尺規(guī)作圖,保留畫圖痕跡,無需證明)
解:確定點(diǎn)Q位置的簡要步驟: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在《科學(xué)》課上,老師講到溫度計(jì)的使用方法及液體的沸點(diǎn)時(shí),好奇的王紅同學(xué)準(zhǔn)備測(cè)量食用油的沸點(diǎn),已知食用油的沸點(diǎn)溫度高于水的沸點(diǎn)溫度(),王紅家只有刻度不超過的溫度計(jì),她的方法是在鍋中倒入一些食用油,用煤氣灶均勻加熱,并每隔測(cè)量一次鍋中油溫,測(cè)量得到的數(shù)據(jù)如下表:
時(shí)間 | 0 | 10 | 20 | 30 | 40 |
油溫 | 10 | 30 | 50 | 70 | 90 |
王紅發(fā)現(xiàn),燒了時(shí),油沸騰了,則下列說法不正確的是( )
A. 沒有加熱時(shí),油的溫度是
B. 加熱,油的溫度是
C. 估計(jì)這種食用油的沸點(diǎn)溫度約是
D. 每加熱,油的溫度升高
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(dòng)點(diǎn)E不與點(diǎn)A、C重合,且保持,連接DE、DF、在此運(yùn)動(dòng)變化的過程中,有下列結(jié)論:;四邊形CEDF的面積隨點(diǎn)E、F位置的改變而發(fā)生變化;;以上結(jié)論正確的是______只填序號(hào).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組在探究三角形全等時(shí),發(fā)現(xiàn)了下面這種典型的基本圖形:
如圖1,已知:在中,,,直線m經(jīng)過點(diǎn)A,直線m,直線m,垂足分別為點(diǎn)D、試猜想DE、BD、CE有怎樣的數(shù)量關(guān)系,請(qǐng)直接寫出;
組員小穎想,如果三個(gè)角不是直角,那結(jié)論是否會(huì)成立呢?如圖2,將中的條件改為:在中,,D、A、E三點(diǎn)都在直線m上,并且有其中為任意銳角或鈍角如果成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
數(shù)學(xué)老師贊賞了他們的探索精神,并鼓勵(lì)他們運(yùn)用這個(gè)知識(shí)來解決問題:
如圖3,F是角平分線上的一點(diǎn),且和均為等邊三角形,D、E分別是直線m上A點(diǎn)左右兩側(cè)的動(dòng)點(diǎn)、E、A互不重合,在運(yùn)動(dòng)過程中線段DE的長度始終為n,連接BD、CE,若,試判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題:探索發(fā)現(xiàn)
(1)自主閱讀:在三角形的學(xué)習(xí)過程,我們知道三角形一邊上的中線將三角形分成了兩個(gè)面積相等三角形,原因是兩個(gè)三角形的底邊和底邊上的高都相等,在此基礎(chǔ)上我們可以繼續(xù)研究:如圖1,AD∥BC,連接AB,AC,BD,CD,則S△ABC=S△BCD .
證明:分別過點(diǎn)A和D,作AF⊥BC于F.DE⊥BC于E,由AD∥BC,可得AF=DE,又因?yàn)镾△ABC= ×BC×AF,S△BCD= .
所以S△ABC=S△BCD
由此我們可以得到以下的結(jié)論:像圖1這樣
(2)問題解決:如圖2,四邊形ABCD中,AB∥DC,連接AC,過點(diǎn)B作BE∥AC,交DC延長線于點(diǎn)E,連接點(diǎn)A和DE的中點(diǎn)P,請(qǐng)你運(yùn)用上面的結(jié)論證明:SABCD=S△APD
(3)應(yīng)用拓展:
如圖3,按此方式將大小不同的兩個(gè)正方形放在一起,連接AF,CF,若大正方形的面積是80cm2 , 則圖中陰影三角形的面積是cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更新果樹品種,某果園計(jì)劃新購進(jìn)A、B兩個(gè)品種的果樹苗栽植培育,若計(jì)劃購進(jìn)這兩種果樹苗共45棵,其中A種樹苗的單價(jià)為7元/棵,購買B種苗所需費(fèi)用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購買計(jì)劃中,B種樹苗的數(shù)量不超過35棵,但不少于A種樹苗的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)購買方案,使總費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個(gè)小正方形的邊長為1,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′.根據(jù)下列條件,利用網(wǎng)格點(diǎn)和直尺畫圖:
(1)補(bǔ)全△A′B′C′;
(2)作出△ABC的中線CD;
(3)畫出BC邊上的高線AE;
(4)若△ABC與△ABE面積相等,則圖中滿足條件且異于點(diǎn)C的格點(diǎn)E共有 個(gè).(注:格點(diǎn)指網(wǎng)格線的交點(diǎn))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com