【題目】C是直線l1上一點,在同一平面內,把一個等腰直角三角板ABC任意擺放,其中直角頂點C與點C重合,過點A作直線l2l1,垂足為點M,過點Bl3l1,垂足為點N

1)當直線l2,l3位于點C的異側時,如圖1,線段BN,AMMN之間的數(shù)量關系 (不必說明理由);

2)當直線l2,l3位于點C的右側時,如圖2,判斷線段BN,AMMN之間的數(shù)量關系,并說明理由;

3)當直線l2,l3位于點C的左側時,如圖3,請你補全圖形,并直接寫出線段BN,AMMN之間的數(shù)量關系.

【答案】1MN=AM+BN;(2MN=BN-AM,見解析;(3)見解析,MN=AMBN

【解析】

1)利用AAS定理證明△NBC≌△MCA,根據(jù)全等三角形的性質、結合圖形解答;
2)根據(jù)直角三角形的性質得到∠CAM=BCN,證明△NBC≌△MCA,根據(jù)全等三角形的性質、結合圖形解答;
3)根據(jù)題意畫出圖形,仿照(2)的作法證明.

1MN=AM+BN

2MN=BN-AM

理由如下:如圖2.

因為l2l1l3l1

所以∠BNC=CMA=90°

所以∠ACM+CAM=90°

因為∠ACB=90°

所以∠ACM+BCN=90°

所以∠CAM=BCN

又因為CA=CB

所以△CBN≌△ACMAAS

所以BN=CM,NC=AM

所以MN=CMCN=BNAM

3)補全圖形,如圖3

結論:MN=AMBN

由(2)得,△CBN≌△ACMAAS).
BN=CMNC=AM
結論:MN=CN-CM=AM-BN

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知雙曲線y1=與直線y2=ax+b交于點A(﹣4,1)和點B(m,﹣4).

(1)求雙曲線和直線的解析式;

(2)直接寫出線段AB的長和y1>y2x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,所有正方形的中心均在坐標原點,且各邊與x軸或y軸平行,從內到外,它們的邊長依次為2,4,68…頂點依次用A1,A2,A3,A4,表示,則頂點A2019的坐標是_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某烤鴨店在確定烤鴨的烤制時間時,主要依據(jù)的是下表的數(shù)據(jù):

鴨的質量/千克

0.5

1

1.5

2

2.5

3

3.5

4

烤制時間/

40

60

80

100

120

140

160

180

設鴨的質量為x千克,烤制時間為t,估計當x=2.8千克時,t的值為(

A. 128B. 132C. 136D. 140

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,利用熱氣球探測器測量大樓AB的高度從熱氣球P處測得大樓頂部B的俯角為37°,大樓底部A的俯角為60°,此時熱氣球P離地面的高度為120m試求大樓AB的高度精確到01m).(參考數(shù)據(jù):sin37°≈060,cos37°≈080,tan37°≈075,≈173

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校運動會需購買A、B兩種獎品共100、B兩種獎品單價分別為10元、15設購買A種獎品m件,購買兩種獎品的總費用為W元.

寫出之間的函數(shù)關系式;

若購買兩種獎品的總費用不超過1150元,且A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,求出自變量m的取值范圍,并確定最少費用W的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半徑為6cm的⊙O中,點A是劣弧BC的中點,點D是優(yōu)弧BC上一點,且∠D=30°,下列四個結論:①OABC;BC=6cm;sinAOB=;④四邊形ABOC是菱形.其中正確結論的序號是( )

A. ①③ B. ①②③④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知EFAD,∠1=∠2,∠BAC70°,求∠AGD(請?zhí)羁眨?/span>

解:∵EFAD

∴∠2      

又∵∠1=∠2

∴∠1=∠3   

AB      

∴∠BAC+   180°(   

∵∠BAC70°(   

∴∠AGD      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ΔABC中,∠ABC的平分線與∠ACB的外角∠ACE的平分線相交于點D

⑴.若∠ABC=60°,∠ACB=40°,求∠A和∠D的度數(shù)。

⑵.由⑴小題的計算結果,猜想,∠A和∠D有什么數(shù)量關系,并加以證明。

查看答案和解析>>

同步練習冊答案