【題目】某校運(yùn)動(dòng)會(huì)需購(gòu)買(mǎi)A、B兩種獎(jiǎng)品共100件、B兩種獎(jiǎng)品單價(jià)分別為10元、15元設(shè)購(gòu)買(mǎi)A種獎(jiǎng)品m件,購(gòu)買(mǎi)兩種獎(jiǎng)品的總費(fèi)用為W元.
寫(xiě)出元與件之間的函數(shù)關(guān)系式;
若購(gòu)買(mǎi)兩種獎(jiǎng)品的總費(fèi)用不超過(guò)1150元,且A種獎(jiǎng)品的數(shù)量不大于B種獎(jiǎng)品數(shù)量的3倍,求出自變量m的取值范圍,并確定最少費(fèi)用W的值.
【答案】(1)W=-5m+1500;(2)當(dāng)m=75時(shí),W取最小值,最小值為1125.
【解析】
(1)設(shè)購(gòu)買(mǎi)A種獎(jiǎng)品m件,購(gòu)買(mǎi)兩種獎(jiǎng)品的總費(fèi)用為W元,則購(gòu)買(mǎi)B種獎(jiǎng)品(100-m)件,根據(jù)總費(fèi)用=A種獎(jiǎng)品單價(jià)×購(gòu)買(mǎi)數(shù)量+B種獎(jiǎng)品單價(jià)×購(gòu)買(mǎi)數(shù)量,即可得出W(元)與m(件)之間的函數(shù)關(guān)系式;
(2)根據(jù)“購(gòu)買(mǎi)兩種獎(jiǎng)品的總費(fèi)用不超過(guò)1150元,且A種獎(jiǎng)品的數(shù)量不大于B種獎(jiǎng)品數(shù)量的3倍”,即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍,再利用一次函數(shù)的性質(zhì)即可求出W的最小值.
(1)設(shè)購(gòu)買(mǎi)A種獎(jiǎng)品m件,購(gòu)買(mǎi)兩種獎(jiǎng)品的總費(fèi)用為W元,則購(gòu)買(mǎi)B種獎(jiǎng)品(100-m)件,
根據(jù)題意得:W=10m+15(100-m)=-5m+1500;
(2)根據(jù)題意得:,
解得:70≤m≤75,
∵-5<0,
∴W隨m值的增大而減小,
∴當(dāng)m=75時(shí),W取最小值,最小值為1125.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)O到△ABC的兩邊AB、AC所在直線(xiàn)的距離相等,且OB=OC。
(1)如圖①,若點(diǎn)O在BC上,求證:AB=AC;
(2)如圖②,若點(diǎn)O在△ABC的內(nèi)部,上題的結(jié)論還成立嗎?為什么?
(3)若點(diǎn)O在△ABC的外部,AB=AC成立嗎?請(qǐng)畫(huà)圖表示。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,F為邊AB的中點(diǎn),DF與對(duì)角線(xiàn)AC交于點(diǎn)G,過(guò)點(diǎn)G作GE⊥AD于點(diǎn)E.若AB=2,且∠1=∠2,則下列結(jié)論:①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四邊形BFOC=.其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC 中,D 是 BC 邊的中點(diǎn),E、F 分別在 AD 及其延長(zhǎng)線(xiàn)上,CE∥BF,連接BE、CF.
(1)求證:△BDF ≌△CDE;
(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)C是直線(xiàn)l1上一點(diǎn),在同一平面內(nèi),把一個(gè)等腰直角三角板ABC任意擺放,其中直角頂點(diǎn)C與點(diǎn)C重合,過(guò)點(diǎn)A作直線(xiàn)l2⊥l1,垂足為點(diǎn)M,過(guò)點(diǎn)B作l3⊥l1,垂足為點(diǎn)N
(1)當(dāng)直線(xiàn)l2,l3位于點(diǎn)C的異側(cè)時(shí),如圖1,線(xiàn)段BN,AM與MN之間的數(shù)量關(guān)系 (不必說(shuō)明理由);
(2)當(dāng)直線(xiàn)l2,l3位于點(diǎn)C的右側(cè)時(shí),如圖2,判斷線(xiàn)段BN,AM與MN之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)當(dāng)直線(xiàn)l2,l3位于點(diǎn)C的左側(cè)時(shí),如圖3,請(qǐng)你補(bǔ)全圖形,并直接寫(xiě)出線(xiàn)段BN,AM與MN之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖案中既是中心對(duì)稱(chēng)圖形,又是軸對(duì)稱(chēng)圖形的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在x軸上,坐標(biāo)為(0,3),點(diǎn)B在x軸上.
(1)在坐標(biāo)系中求作一點(diǎn)M,使得點(diǎn)M到點(diǎn)A,點(diǎn)B和原點(diǎn)O這三點(diǎn)的距離相等,在圖中保留作圖痕跡,不寫(xiě)作法;
(2)若sin∠OAB=,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線(xiàn)BE交AD于點(diǎn)F,AG平分∠DAC.給出下列結(jié)論:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④FG∥AC;⑤EF=FG.其中正確的結(jié)論是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com