【題目】如圖,在平面直角坐標系中,已知矩形OABC,點O為坐標原點,點A在y軸正半軸上,點C在x軸正半軸上,OA=4,OC=6,點E為OC的中點,將△OAE沿AE翻折,使點O落在點O′處,作直線CO',則直線CO'的解析式為( 。
A.y=﹣x+6B.y=﹣x+8C.y=﹣x+10D.y=﹣x+8
【答案】D
【解析】
連接OO'交AE與點M,過點O'作O'H⊥OC于點H,由軸對稱的性質(zhì)可知AE垂直平分OO',先用面積法求出OM的長,進一步得出OO'的長,再證△AOE∽△OHO',分別求出OH,O'H的長,得出點O'的坐標,再結(jié)合點C坐標即可用待定系數(shù)法求出直線CO'的解析式.
解:連接OO'交AE與點M,過點O'作O'H⊥OC于點H,
∴點E為OC中點,
∴OE=EC=OC=3,
在Rt△AOE中,OE=3,AO=4,
∴AE==5,
∵將△OAE沿AE翻折,使點O落在點O′處,
∴AE垂直平分OO',
∴OM=O'M,
在Rt△AOE中,
∵S△AOE=AOOE=AEOM,
∴×3×4=×5×OM,
∴OM=,
∴OO'=,
∵∠O'OH+∠AOM=90°,∠MAO+∠AOM=90°,
∴∠MAO=∠O'OH,
又∵∠AOE=∠OHO'=90°,
∴△AOE∽△OHO',
∴==,
即==,
∴OH=,O'H=,
∴O'的坐標為(,),
將點O'(,),C(6,0)代入y=kx+b,
得,,
解得,k=﹣,b=8,
∴直線CO'的解析式為y=﹣x+8,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)有兩點E、F滿足AE=FC= 4,EF =6,AE⊥EF,CF⊥EF,則正方形ABCD的面積為 ( )
A.24B.25C.48D.50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,,AC為直徑,DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)若AC=9,CE=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南沙群島是我國固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進行捕魚作業(yè),當(dāng)漁船航行至B處時,測得該島位于正北方向海里的C處,為了防止某國還巡警干擾,就請求我A處的魚監(jiān)船前往C處護航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,解決問題:
學(xué)習(xí)了勾股定理后我們知道:直角三角形兩條直角邊的平方和等于斜邊的平方.根據(jù)勾股定理我們定義:如圖①,點M、N是線段AB上兩點,如果線段AM、MN、NB能構(gòu)成直角三角形,則稱點M、N是線段AB的勾股點
解決問題
(1)在圖①中,如果AM=2,MN=3,則NB= .
(2)如圖②,已知點C是線段AB上一定點(AC<BC),在線段AB上求作一點D,使得C、D是線段AB的勾股點.李玉同學(xué)是這樣做的:過點C作直線GH⊥AB,在GH上截取CE=AC,連接BE,作BE的垂直平分線交AB于點D,則C、D是線段AB的勾股點你認為李玉同學(xué)的做法對嗎?請說明理由
(3)如圖③,DE是△ABC的中位線,M、N是AB邊的勾股點(AM<MN<NB),連接CM、CN分別交DE于點G、H求證:G、H是線段DE的勾股點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不透明布袋內(nèi)裝有形狀、大小、質(zhì)地完全相同的4個小球,分別標有數(shù)字1,2,3,4.
(1)從布袋中隨機地取出一個小球,求小球上所標的數(shù)字不為2的概率;
(2)從布袋中隨機地取出一個小球,記錄小球上所標的數(shù)字為x,不將取出的小球放回布袋,再隨機地取出一個小球,記錄小球上所標的數(shù)字為y,這樣就確定點E的一個坐標為(x,y),求點E落在直線y=x+1上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某專賣店經(jīng)市場調(diào)查得知,一種商品的月銷售量 Q(單位:噸)與銷售價格 x(單位:萬元/噸)的關(guān)系可用下圖中的折線表示.
(1)寫出月銷售量 Q 關(guān)于銷售價格 x 的關(guān)系;
(2)如果該商品的進價為 5 萬元/噸,除去進貨成本外,專賣店銷售該商品每月的固定成本為 10 萬元,問該商品 每噸定價多少萬元時,銷售該商品的月利潤最大?并求月利潤的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com