【題目】如圖,正方形ABCD內(nèi)有兩點(diǎn)E、F滿足AE=FC= 4,EF =6,AE⊥EF,CF⊥EF,則正方形ABCD的面積為 ( )
A.24B.25C.48D.50
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某風(fēng)景區(qū)的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,圖中陰影是草地,其余是水面.那么乘游艇游點(diǎn)C出發(fā),行進(jìn)速度為每小時(shí)11千米,到達(dá)對岸AD最少要用 小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=(x﹣3)2與x軸交于A、B兩點(diǎn)(點(diǎn)A在B的左側(cè)),與y軸交于C點(diǎn),頂點(diǎn)D.
(1)求點(diǎn)A、B、D三點(diǎn)的坐標(biāo);
(2)連結(jié)CD交x軸于G,過原點(diǎn)O作OE⊥CD,垂足為H,交拋物線對稱軸于E,求出E點(diǎn)的縱坐標(biāo);
(3)以②中點(diǎn)E為圓心,1為半徑畫圓,在對稱軸右側(cè)的拋物線上有一動(dòng)點(diǎn)P,過P作⊙E的切線,切點(diǎn)為Q,當(dāng)PQ的長最小時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點(diǎn)的三角形與△ABC相似,則點(diǎn)E的坐標(biāo)不可能是
A.(6,0) B.(6,3) C.(6,5) D.(4,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,平行四邊形ABCD中,AE:EB=1:2.
(1)求AE:DC的值.
(2)△AEF與△CDF相似嗎?若相似,請說明理由,并求出相似比.
(3)如果S△AEF=6cm2,求S△CDF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中,已知格點(diǎn)△ABC和格點(diǎn)O.
(1)畫出△ABC關(guān)于點(diǎn)O對稱的△A1B1C1;
(2)畫出△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°的△A2B2C2 ;
(3)若以點(diǎn)A、O、C、D為頂點(diǎn)的四邊形是平行四邊形,則點(diǎn)D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,正方形ABCD中,以CD為邊作等邊三角形CDE,求∠AED的度數(shù).(畫出相應(yīng)的圖形并解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B、C、D在同一直線上,△ABC和△ECD都是等邊三角形,BE與AD相交于點(diǎn)M,
(1)求證:∠CBE=∠CAD;
(2)由(1)可知,圖中的△EBC是由△DAC怎樣變換(填一種變換)得到的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形OABC,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)C在x軸正半軸上,OA=4,OC=6,點(diǎn)E為OC的中點(diǎn),將△OAE沿AE翻折,使點(diǎn)O落在點(diǎn)O′處,作直線CO',則直線CO'的解析式為( 。
A.y=﹣x+6B.y=﹣x+8C.y=﹣x+10D.y=﹣x+8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com