20.如圖所示,在平面直角坐標(biāo)系xOy中,半徑為1的⊙P的圓心P的坐標(biāo)為(-3,0),將⊙P沿x軸正方向平移,使⊙P與y軸相切,則平移的距離為2或4.

分析 平移分在y軸的左側(cè)和y軸的右側(cè)兩種情況寫出答案即可.

解答 解:當(dāng)⊙P位于y軸的左側(cè)且與y軸相切時,平移的距離為2;
當(dāng)⊙P位于y軸的右側(cè)且與y軸相切時,平移的距離為4.
故答案為:2或4.

點評 本題考查了直線與圓的位置關(guān)系,解題的關(guān)鍵是了解當(dāng)圓與直線相切時,點到圓心的距離等于圓的半徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2015-2016學(xué)年內(nèi)蒙古巴彥淖爾市臨河區(qū)七年級下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:單選題

買鋼筆和鉛筆共30支,其中鋼筆的數(shù)量比鉛筆數(shù)量的2倍少3支.若設(shè)買鋼筆x支,鉛筆y支,根據(jù)題意,可得方程組( ).

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.已知一拋物線過點(-3,0)、(-2,-6),且對稱軸是x=-1.求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設(shè)運動的時間為t(s)(0<t<2),解答下列問題:
(1)當(dāng)0<t<2為何值時,以A,P,Q為頂點的三角形與△ABC相似?
(2)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時,△AQP是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.“十一”黃金周期間,某風(fēng)景區(qū)在7天假期中每天旅游的人數(shù)變化如表(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù))(單位:萬人)
日期1日2日3日4日5日6日7日
人數(shù)變化+1.6+0.8+0.4-0.4-0.8+0.2-1.2
(1)請判斷七天內(nèi)游客人數(shù)最多的是哪天?最少的是哪天?它們相差多少萬人?
(2)若9月30日該景區(qū)的游客人數(shù)為2萬人,景區(qū)門票原價80元/人,這七天景區(qū)門票總收入是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖1,在Rt△ABC中,∠B=90°,∠C=30°,AC=6.動點D從C出發(fā)到A停止,沿線段CA以每秒1個單位長度的速度移動.先過點D作DF⊥BC于F,再過點F作FE∥AC,交AB于E.設(shè)動點D的運動時間為t秒.
(1)填空:CD=t,DF=$\frac{1}{2}$t,(用含t的代數(shù)式表示)
(2)當(dāng)四邊形AEFD為菱形時,求t的值;
(3)當(dāng)△FED是直角三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.計算:tan45°sin45°-2sin30°cos45°+tan30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.(1)用配方法解方程:x2+4x-1=0
(2)用公式法解方程:3x2-5x-1=0
(3)用因式分解法解方程:4x(2x+1)=3(2x+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.多項式:12x(a+b)-4y(a+b)的公因式是4(a+b).

查看答案和解析>>

同步練習(xí)冊答案