【題目】如圖,在平面直角坐標(biāo)系xOy中,四邊形ABOC是正方形,點(diǎn)A的坐標(biāo)為(1,1),是以點(diǎn)B為圓心,BA為半徑的圓;是以點(diǎn)O為圓心,OA1為半徑的圓;是以點(diǎn)C為圓心,CA2為半徑的圓;是以點(diǎn)A為圓心,AA3為半徑的圓弧,它們所對(duì)的圓心角都等于90°。繼續(xù)以點(diǎn)B、O、C、A為圓心按上述做法得到的曲線AA1A2A3A4A5……稱(chēng)為“正方形的漸開(kāi)線”,那么點(diǎn)A5的坐標(biāo)是________,點(diǎn)A2018的坐標(biāo)是_________
【答案】(6,0) (0,-2018)
【解析】
根據(jù)畫(huà)弧的方法以及羅列部分點(diǎn)的坐標(biāo)發(fā)現(xiàn):點(diǎn)Ax的坐標(biāo)滿(mǎn)足“A4n=(1,4n+1),A4n+1=(4n+2,0),A4n+2=(0,-(4n+2)),A4n+3=(-(4n+3),1)”,根據(jù)這一規(guī)律即可得出A5和A2018點(diǎn)的坐標(biāo).
觀察,找規(guī)律:A(1,1),A1(2,0),A2(0,-2),A3(-3,1),A4(1,5),A5(6,0),A6(0,-6),A7(-7,1),A8(1,9)…,
∴A4n=(1,4n+1),A4n+1=(4n+2,0),A4n+2=(0,-(4n+2)),A4n+3=(-(4n+3),1).
∵5=4+1,2018=504×4+2,
∴A5的坐標(biāo)為(64+2,0)=(6,0),A2018的坐標(biāo)為(1,-(4×504+2))=(1,-2018).
故答案為:(6,0);(1,-2018).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在△ABC中,∠ACB=90°,以AB為直徑作⊙O;過(guò)點(diǎn)C作直線CD交AB的延長(zhǎng)線于點(diǎn)D,且BD=OB,CD=CA.
(1)求證:CD是⊙O的切線.
(2)如圖(2),過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E,若⊙O的半徑為8,∠A=30°,求線段BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D是邊BC上任意一點(diǎn),連接AD,過(guò)點(diǎn)C作CE⊥AD于點(diǎn)E.
(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長(zhǎng);
(2)如圖2,過(guò)點(diǎn)C作CF⊥CE,且CF=CE,連接FE并延長(zhǎng)交AB于點(diǎn)M,連接BF,求證:AM=BM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表中,y是x的一次函數(shù).
x | 2 | 1 | 2 | 5 | |
y | 6 | 3 | 12 | 15 |
(1)求該函數(shù)的表達(dá)式,并補(bǔ)全表格;
(2)已知該函數(shù)圖象上一點(diǎn)M(1,-3)也在反比例函數(shù)圖象上,求這兩個(gè)函數(shù)圖象的另一交點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形AOBC,以O為坐標(biāo)原點(diǎn),OB、OA分別在x軸、y軸上,點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)B的坐標(biāo)為(10,0),點(diǎn)E是BC邊上一點(diǎn),把長(zhǎng)方形AOBC沿AE翻折后,C點(diǎn)恰好落在x軸上點(diǎn)F處.
(1)求點(diǎn)E、F的坐標(biāo);
(2)求AF所在直線的函數(shù)關(guān)系式;
(3)在x軸上求一點(diǎn)P,使△PAF成為以AF為腰的等腰三角形,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將等邊沿翻折得,,點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)的角度后得到對(duì)應(yīng)的線段(即),交于點(diǎn),則下列結(jié)論:①;②;③當(dāng)為線段的中點(diǎn)時(shí),則;④四邊形的面積為;⑤連接、,當(dāng)的長(zhǎng)度最小時(shí),則的面積為.則說(shuō)法正確的有________(只填寫(xiě)序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,一次函數(shù)的圖像分別與、軸交于兩點(diǎn),正比例函數(shù)的圖像與交于點(diǎn).
(1)求的值及的解析式;
(2)求的值;
(3)在坐標(biāo)軸上找一點(diǎn),使以為腰的為等腰三角形,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)學(xué)校積極開(kāi)展陽(yáng)光體育活動(dòng),組織了九年級(jí)學(xué)生定點(diǎn)投籃,規(guī)定每人投籃3次.現(xiàn)對(duì)九年級(jí)(1)班每名學(xué)生投中的次數(shù)進(jìn)行統(tǒng)計(jì),繪制成如下的兩幅統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,回答下列問(wèn)題.
(1)求出九年級(jí)(1)班學(xué)生人數(shù);
(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;
(3)求出扇形統(tǒng)計(jì)圖中3次的圓心角的度數(shù);
(4)若九年級(jí)有學(xué)生200人,估計(jì)投中次數(shù)在2次以上(包括2次)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在軸的負(fù)半軸、軸的正半軸上,點(diǎn)B在第二象限.將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使點(diǎn)B落在軸上,得到矩形ODEF,BC與OD相交于點(diǎn)M.若經(jīng)過(guò)點(diǎn)M的反比例函數(shù)y=(x<0)的圖象交AB于點(diǎn)N,的圖象交AB于點(diǎn)N, S矩形OABC=32,tan∠DOE=,,則BN的長(zhǎng)為_(kāi)_____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com