【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).
其中正確結(jié)論的有( )
A. ①②③ B. ①③④ C. ③④⑤ D. ②③⑤
【答案】C
【解析】
由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點(diǎn)判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.
①由圖象可知:a<0,b>0,c>0,abc<0,故①錯(cuò)誤;
②當(dāng)x=-1時(shí),y=a-b+c<0,即b>a+c,故②錯(cuò)誤;
③由對稱知,當(dāng)x=2時(shí),函數(shù)值大于0,即y=4a+2b+c>0,故③正確;
④當(dāng)x=3時(shí)函數(shù)值小于0,y=9a+3b+c<0,且x=-=1, 即a=-,代入得9(-)+3b+c<0,得2c<3b,故④正確;
⑤當(dāng)x=1時(shí),y的值最大.此時(shí),y=a+b+c,
而當(dāng)x=m時(shí),y=am2+bm+c,
所以a+b+c>am2+bm+c,
故a+b>am2+bm,即a+b>m(am+b),故⑤正確.
綜上所述,③④⑤正確.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在邊BC上,連接AD .
(1)試?yán)贸咭?guī)作圖,求作:線段AE,使得AE是線段AD繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)得到的,且(保留作圖痕跡,不寫作法于證明過程);
(2)連接DE交AC于F,若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=6,點(diǎn)M在⊙O上,∠MBA=20°,N是的中點(diǎn),P是直徑AB上的一動點(diǎn),若AN=1,則△PMN周長的最小值為( 。
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,OD⊥AB,垂足為點(diǎn)C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);
(2)若CD=2,AB=8,求半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過點(diǎn)C的直線交AB的延長線于點(diǎn)D,AE⊥DC,垂足為E,F是AE與⊙O的交點(diǎn),AC平分∠BAE,連接OC.
(1)求證:DE是⊙O的切線;
(2)若⊙O半徑為4,∠D=30°,求圖中陰影部分的面積(結(jié)果用含π和根號的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD為∠BAC的平分線,BM⊥AD,垂足為M,且AB=5,BM=2,AC=9,則∠ABC與∠C的關(guān)系為( )
A.∠ABC=2∠CB.∠ABC=∠CC.∠ABC=∠CD.∠ABC=3∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段AB上有一動點(diǎn)C(不與A,B重合),分別以AC,BC為邊向上作等邊△ACM和等邊△BCN,點(diǎn)D是MN的中點(diǎn),連結(jié)AD,BD,在點(diǎn)C的運(yùn)動過程中,有下列結(jié)論:①△ABD可能為直角三角形;②△ABD可能為等腰三角形;③△CMN可能為等邊三角形;④若AB=6,則AD+BD的最小值為. 其中正確的是( 。
A.②③B.①②③④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFMN的一邊MN在邊BC上,頂點(diǎn)E、F分別在AB、AC上,其中BC=24cm,高AD=12cm.
(1)求證:△AEF∽△ABC:
(2)求正方形EFMN的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個(gè)衛(wèi)生死角內(nèi)的垃圾.若租用甲、乙兩車運(yùn)送,兩車各運(yùn)6趟可完成,需支付運(yùn)費(fèi)1800元.已知甲、乙兩車單獨(dú)運(yùn)完此堆垃圾,乙車所運(yùn)的趟數(shù)是甲車的1.5倍,且乙車每趟運(yùn)費(fèi)比甲車少100元.
(1)求甲、乙兩車單獨(dú)運(yùn)完此堆垃圾各需多少趟?
(2)若單獨(dú)租用一臺車,租用哪臺車更合算,請你通過計(jì)算說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com