【題目】一張寬為6cm的平行四邊形紙帶ABCD如圖1所示,AB=10cm,小
明用這張紙帶將底面周長(zhǎng)為10cm直三棱柱紙盒的側(cè)面進(jìn)行包貼(要求包
貼時(shí)沒有重疊部分). 小明通過操作后發(fā)現(xiàn)此類包貼問題可將直三棱柱的
側(cè)面展開進(jìn)行分析.


(1)若紙帶在側(cè)面纏繞三圈,正好將這個(gè)直三棱柱紙盒的側(cè)面全部包貼滿.則紙帶AD的長(zhǎng)度為 cm;
(2)若AD=100cm,紙帶在側(cè)面纏繞多圈,正好將這個(gè)直三棱柱紙盒的側(cè)面全部包貼滿.則這個(gè)直三棱柱紙盒的高度是cm.

【答案】
(1)25
(2)60
【解析】(1)易得AF=DF,F(xiàn)G=DH,過點(diǎn)G作GI⊥AD,垂足為I,
設(shè)AF=x,則HE=FG= =
在Rt△GEH中, ,解得x= ,
則AD=2x=25.
故答案為25.

2)直三棱柱的面積等于平行四邊形ABCD的面積,則直三棱柱的高h(yuǎn)=100×6÷10=60(cm).
(1)由題意可得直三棱柱的面積等于平行四邊形ABCD的面積,則易得AF=DF,F(xiàn)G=DH,可設(shè)AF=x,運(yùn)用等積法求出GF,從而由勾股定理構(gòu)造方程解出x即可;(2)直三棱柱的面積等于平行四邊形ABCD的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB,AC的長(zhǎng)是這個(gè)方程的兩個(gè)實(shí)數(shù)根.第三邊BC的長(zhǎng)為5,當(dāng)△ABC是等腰三角形時(shí),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,線段AB的兩個(gè)端點(diǎn)的坐標(biāo)分別為A(﹣3,0),B(0,4).
(1)畫出線段AB先向右平移3個(gè)單位,再向下平移4個(gè)單位后得到的線段CD,并寫出A的對(duì)應(yīng)點(diǎn)D的坐標(biāo),B的對(duì)應(yīng)點(diǎn)C的坐標(biāo);
(2)連接AD、BC,判斷所得圖形的形狀.(直接回答,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC的四個(gè)頂點(diǎn)坐標(biāo)分別為O(0,0),A(8,0),B(4,4),C(0,4),直線l:y=x+b保持與四邊形OABC的邊交于點(diǎn)M、N(M在折線AOC上,N在折線ABC上).設(shè)四邊形OABC在l右下方部分的面積為S1 , 在l左上方部分的面積為S2 , 記S為S1、S2的差(S≥0).

(1)求∠OAB的大小;
(2)當(dāng)M、N重合時(shí),求l的解析式;
(3)當(dāng)b≤0時(shí),問線段AB上是否存在點(diǎn)N使得S=0?若存在,求b的值;若不存在,請(qǐng)說明理由;
(4)求S與b的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了能以“更新、更綠、更潔、更寧”的城市形象迎接2011年大運(yùn)會(huì)的召開,深圳市全面實(shí)施市容市貌環(huán)境提升行動(dòng),某工程隊(duì)承擔(dān)了一段長(zhǎng)1500米的道路綠化工程,施工時(shí)有兩種綠化方案:
甲方案是綠化1米的道路需要A型花2枝和B型花3枝,成本是22元;
乙方案是綠化1米的道路需要A型花1枝和B型花5枝,成本是25元.
現(xiàn)要求按照乙方案綠化道路的總長(zhǎng)度不能少于按甲方案綠化道路的總長(zhǎng)度的2倍.
(1)求A型花和B型花每枝的成本分別是多少元?
(2)求當(dāng)按甲方案綠化的道路總長(zhǎng)度為多少米時(shí),所需工程的總成本最少?總成本最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)探究:如圖1 ,直線l與坐標(biāo)軸的正半軸分別交于A,B兩點(diǎn),與反比例函數(shù) 的圖象交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),過點(diǎn)C作CE⊥y軸于點(diǎn)E,過點(diǎn)D作DF⊥x軸于點(diǎn)F,CE與DF交于點(diǎn)G(ab).

①若 ,請(qǐng)用含n的代數(shù)式表示 ;
②求證: ;
(2)應(yīng)用:如圖2,直線l與坐標(biāo)軸的正半軸分別交于點(diǎn)A,B兩點(diǎn),與反比例函數(shù) 的圖象交于點(diǎn)C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),已知 ,△OBD的面積為1,試用含m的代數(shù)式表示k.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,AB=AC,若以點(diǎn)B為圓心,BC長(zhǎng)為半徑畫弧,交腰AC于點(diǎn)E,則下列結(jié)論一定正確的是( )

A.AE=EC
B.AE=BE
C.∠EBC=∠BAC
D.∠EBC=∠ABE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,以AB為直徑作半圓,點(diǎn)P是CD中點(diǎn),BP與半圓交于點(diǎn)Q,連結(jié)DQ,給出如下結(jié)論:①DQ=1;② = ;③SPDQ= ;④cos∠ADQ= ,其中正確結(jié)論是(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(﹣8,0),B(2,0),點(diǎn)C在直線y=﹣ 上,則使△ABC是直角三角形的點(diǎn)C的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案