【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長.
【答案】(1)見解析;(2)6.
【解析】
試題分析:(1)利用對(duì)應(yīng)兩角相等,證明兩個(gè)三角形相似△ADF∽△DEC;
(2)利用△ADF∽△DEC,可以求出線段DE的長度;然后在Rt△ADE中,利用勾股定理求出線段AE的長度.
(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,
∴∠C+∠B=180°,∠ADF=∠DEC.
∵∠AFD+∠AFE=180°,∠AFE=∠B,
∴∠AFD=∠C.
在△ADF與△DEC中,
∴△ADF∽△DEC.
(2)解:∵四邊形ABCD是平行四邊形,∴CD=AB=8.
由(1)知△ADF∽△DEC,
∴,∴DE===12.
在Rt△ADE中,由勾股定理得:AE===6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將三角板ABC與三角板ADE擺放在一起;如圖2,固定三角板ABC,將三角板ADE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角∠CAE=α(0°<α<180°).當(dāng)△ADE的一邊與△ABC的某一邊平行(不共線)時(shí),寫出旋轉(zhuǎn)角α的所有可能的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若A=(2+1)(22+1)(24+1)(28+1),則A的末位數(shù)字是( ).
A. 4 B. 5 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)認(rèn)真觀察圖形,解答下列問題:
(1)根據(jù)圖中條件,用兩種方法表示兩個(gè)陰影圖形的面積的和(只需表示,不必化簡);
(2)由(1),你能得到怎樣的等量關(guān)系?請(qǐng)用等式表示;
(3)如果圖中的a,b(a>b)滿足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿線段AB向點(diǎn)B運(yùn)動(dòng).在運(yùn)動(dòng)過程中,當(dāng)△APC為等腰三角形時(shí),點(diǎn)P出發(fā)的時(shí)刻t可能的值為( )
A.5 B.5或8 C. D.4或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師利用休息時(shí)間組織學(xué)生測量山坡上一棵大樹CD的高度,如圖,山坡與水平面成30°角(即∠MAN=30°),在山坡底部A處測得大樹頂端點(diǎn)C的仰角為45°,沿坡面前進(jìn)20米,到達(dá)B處,又測得樹頂端點(diǎn)C的仰角為60°(圖中各點(diǎn)均在同一平面內(nèi)),求這棵大樹CD的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.732)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com