【題目】請(qǐng)認(rèn)真觀察圖形,解答下列問(wèn)題:
(1)根據(jù)圖中條件,用兩種方法表示兩個(gè)陰影圖形的面積的和(只需表示,不必化簡(jiǎn));
(2)由(1),你能得到怎樣的等量關(guān)系?請(qǐng)用等式表示;
(3)如果圖中的a,b(a>b)滿(mǎn)足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.
【答案】(1)a2+b2或 (a+b)2﹣2ab;(2)a2+b2=(a+b)2﹣2ab;(3)①9,②2385
【解析】
試題分析:(1)直接把兩個(gè)正方形的面積相加或利用大正方形的面積減去兩個(gè)長(zhǎng)方形的面積;
(2)利用面積相等把(1)中的式子聯(lián)立即可;
(3)注意a,b都為正數(shù)且a>b,利用(2)的結(jié)論進(jìn)行探究得出答案即可.
解:(1)兩個(gè)陰影圖形的面積和可表示為:
a2+b2或 (a+b)2﹣2ab;
(2)a2+b2=(a+b)2﹣2ab;
(3)∵a,b(a>b)滿(mǎn)足a2+b2=53,ab=14,
∴①(a+b)2=a2+b2+2ab
=53+2×14=81
∴a+b=±9,
又∵a>0,b>0,∴a+b=9.
②∵a4﹣b4=(a2+b2)(a+b)(a﹣b),
且∴a﹣b=±5
又∵a>b>0,
∴a﹣b=5,
∴a4﹣b4=(a2+b2)(a+b)(a﹣b)=53×9×5=2385.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過(guò)網(wǎng)格點(diǎn)A、B、C,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:
(1)請(qǐng)?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,D點(diǎn)坐標(biāo)為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);
(3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開(kāi)圖,求該圓錐的底面半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)y=x與雙曲線(xiàn)y=(k>0)交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(﹣4,﹣2),C為雙曲線(xiàn)y=(k>0)上一點(diǎn),且在第一象限內(nèi),若△AOC的面積為6,則點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點(diǎn)的三角形與△ABC相似,則點(diǎn)E的坐標(biāo)不可能是( )
A.(6,0) B.(6,3) C.(6,5) D.(4,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在Rt△ABC中,∠C=90°,點(diǎn)D是線(xiàn)段CA延長(zhǎng)線(xiàn)上一點(diǎn),且AD=AB.點(diǎn)F是線(xiàn)段AB上一點(diǎn),連接DF,以DF為斜邊作等腰Rt△DFE,連接EA,EA滿(mǎn)足條件EA⊥AB.
(1)若∠AEF=20°,∠ADE=50°,AC=2,求AB的長(zhǎng)度;
(2)求證:AE=AF+BC;
(3)如圖2,點(diǎn)F是線(xiàn)段BA延長(zhǎng)線(xiàn)上一點(diǎn),探究AE、AF、BC之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,已知D為直線(xiàn)BC上一點(diǎn),若∠ABC=x°,∠BAD=y°.
(1)若CD=CA=AB,請(qǐng)求出y與x的等量關(guān)系式;
(2)當(dāng)D為邊BC上一點(diǎn),并且CD=CA,x=40,y=30時(shí),則AB AC(填“=”或“≠”);
(3)如果把(2)中的條件“CD=CA”變?yōu)?/span>“CD=AB”,且x,y的取值不變,那么(1)中的結(jié)論是否仍成立?若成立請(qǐng)寫(xiě)出證明過(guò)程,若不成立請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線(xiàn)段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列多項(xiàng)式中是完全平方式的是( )
A. 2x2+4x-4 B. 16x2-8y2+1 C. 9a2-12a+4 D. x2y2+2xy+y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,AE平分∠BAC.
(1)若∠C=70°,∠B=40°,求∠DAE的度數(shù)
(2)若∠C-∠B=30°,則∠DAE=________.
(3)若∠C-∠B=(∠C>∠B),求∠DAE的度數(shù)(用含的代數(shù)式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com