某果品公司為指導(dǎo)今年的櫻桃銷售,對(duì)往年的市場銷售情況進(jìn)行調(diào)查統(tǒng)計(jì),得到如下數(shù)據(jù):
銷售價(jià)x(元/kg)25242322
銷售量y(kg)2000250030003500
(1)在如圖坐標(biāo)系中作出各組有序數(shù)對(duì)(x,y)所對(duì)應(yīng)點(diǎn),連接并觀察所得圖象,判定y與x之間函數(shù)關(guān)系式,并求出y與x關(guān)系式.
(2)若櫻桃進(jìn)價(jià)為12元/kg,求銷售利潤P(元)與銷售價(jià)x(元/kg)之間函數(shù)關(guān)系式,并求售價(jià)多少元時(shí),利潤最大?
(1)正確描點(diǎn)、連線.由圖象可知,y是x的一次函數(shù).
設(shè)y=kx+b,
∵點(diǎn)(25,2000),(24,2500)在圖象上,
2000=25k+b
2500=24k+b
,
解之得:
k=-500
b=14500

∴y=-500x+14500;

(2)P=(x-12)•y
=(x-12)•(-500x+14500),
=-500x2+20500x-174000,
∴P與x的函數(shù)關(guān)系式為
P=-500x2+20500x-174000,
∵P=-500x2+20500x-174000,
=-500(x-
41
2
2+36125
∴當(dāng)銷售價(jià)為20.5元/千克時(shí),能獲得最大利潤.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,4),頂點(diǎn)為(1,5).
(1)求該拋物線的函數(shù)關(guān)系式;
(2)連接AC、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=ax2+bx+c經(jīng)過原點(diǎn)(0,0)和A(1,-3),B(-1,5)兩點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為C,以O(shè)C為直徑作⊙M,如果過拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,且與y軸的正半軸交點(diǎn)為E,連接MD,已知E點(diǎn)的坐標(biāo)為(0,m),求四邊形EOMD的面積(用含m的代數(shù)式表示);
(3)延長DM交⊙M于點(diǎn)N,連接ON,OD,當(dāng)點(diǎn)P在(2)的條件下運(yùn)動(dòng)到什么位置時(shí),能使得四邊形EOMD和△DON的面積相等,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小張同學(xué)善于改進(jìn)學(xué)習(xí)方法,他發(fā)現(xiàn)對(duì)解題過程進(jìn)行回顧反思,效果會(huì)更好.某一天他利用30分鐘時(shí)間進(jìn)行自主學(xué)習(xí).假設(shè)他用于解題的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖甲所示,用于回顧反思的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖乙所示(其中OA是拋物線的一部分,A為拋物線的頂點(diǎn)),且用于回顧反思的時(shí)間不超過用于解題的時(shí)間.
問:小張如何分配解題和回顧反思的時(shí)間,才能使這30分鐘的學(xué)習(xí)收益總量最大?
(學(xué)習(xí)收益總量=解題的學(xué)習(xí)收益量+回顧反思的學(xué)習(xí)收益量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某飲料經(jīng)營部每天的固定成本為200元,其銷售的飲料每瓶進(jìn)價(jià)為5元.銷售單價(jià)與日均銷售量的關(guān)系如下:
售價(jià)單價(jià)(元)67891112
日均銷售量(瓶)480440400360320240
(1)若記銷售單價(jià)比每瓶進(jìn)價(jià)多x元時(shí),日均毛利潤(毛利潤=售價(jià)-進(jìn)價(jià)-固定成本)為y元,求y關(guān)于x的函數(shù)解析式和自變量的取值范圍;
(2)若要使日均毛利潤達(dá)到最大,銷售單價(jià)應(yīng)定為多少元?最大日均毛利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

跳繩時(shí),繩甩到最高處時(shí)的形狀是拋物線.正在甩繩的甲、乙兩名同學(xué)拿繩的手間距AB為6米,到地面的距離AO和BD均為0.9米,身高為1.4米的小麗站在距點(diǎn)O的水平距離為1米的點(diǎn)F處,繩子甩到最高處時(shí)剛好通過她的頭頂點(diǎn)E.以點(diǎn)o為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,設(shè)此拋物線的解析式為y=ax2+bx+0.9.
(1)求該拋物線的解析式;
(2)如果身高為157.5厘米的小明站在OD之間且離點(diǎn)O的距離為t米,繩子甩到最高處時(shí)超過他的頭頂,請(qǐng)結(jié)合函數(shù)圖象,求出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=
1
4
x2+1,直線y=kx+b經(jīng)過點(diǎn)B(0,2)
(1)求b的值;
(2)將直線y=kx+b繞著點(diǎn)B旋轉(zhuǎn)到與x軸平行的位置時(shí)(如圖1),直線與拋物線y=
1
4
x2+1相交,其中一個(gè)交點(diǎn)為P,求出P的坐標(biāo);
(3)將直線y=kx+b繼續(xù)繞著點(diǎn)B旋轉(zhuǎn),與拋物線相交,其中一個(gè)交點(diǎn)為P'(如圖②),過點(diǎn)P'作x軸的垂線P'M,點(diǎn)M為垂足.是否存在這樣的點(diǎn)P',使△P'BM為等邊三角形?若存在,請(qǐng)求出點(diǎn)P'的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形OBCD中,OB=8,BC=1,CD=10.
(1)求C,D兩點(diǎn)的坐標(biāo);
(2)若線段OB上存在點(diǎn)P,使PD⊥PC,求過D,P,C三點(diǎn)的拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A(-2,0)和點(diǎn)B,與y軸相交于點(diǎn)C,頂點(diǎn)D(1,-
9
2

(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求四邊形ACDB的面積;
(3)若平移(1)中的拋物線,使平移后的拋物線與坐標(biāo)軸僅有兩個(gè)交點(diǎn),請(qǐng)直接寫出一個(gè)平移后的拋物線的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案