【題目】已知,在中,的中點.

問題發(fā)現(xiàn)

如圖①,若點分別是的中點,連接則線段的數(shù)量關系是 ___ _,線段的位置關系是 ___ _;

拓展探究

如圖②,若點分別是上的點,且連接上述結論是否依然成立?若成立,請給出證明;若不成立,請說明理由;

解決問題

當點分別為延長線上的點,且連接直接寫出的面積.

【答案】(1);(2)結論成立,,證明見解析;(310

【解析】

(1)利用三角形中位線的性質(zhì),先證明四邊形EFDB和四邊形EFCD是平行四邊形,再根據(jù)平行四邊形的性質(zhì)即可得到答案;

(2) 連接,證,根據(jù)即可算出答案;

(3) 連接,求出,根據(jù)三角形的面積公式即可得到答案;

解:,

證明:若點分別是的中點,

則EF是三角形ABC的中位線,

又∵點的中點,

,,

∴四邊形EFDB和四邊形EFCD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),

∴∠EFD=B=45°,∠FED=C=45°(平行四邊形對角相等),

∴∠EDF=180°-45°-45°=90°,

(2)結論成立,

證明:如解圖①,連接

,點的中點,

平分

中,

,

,

;

(3)三角形的面積為

如解圖②,連接

為等腰三角形,

,點的中點,

,

為等腰直角三角形.

中,

;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】由于世界人口增長、水污染以及水資源浪費等原因,全世界面臨著淡水資源不足的問題,我國是世界上嚴重缺水的國家之一.節(jié)約用水是水資源合理利用的關鍵所在,是最快捷、最有效、最可行的維護水資源可持續(xù)利用的途徑之一,為了調(diào)查居民的用水情況,有關部門對某小區(qū)的20戶居民的月用水量進行了調(diào)查,數(shù)據(jù)如下(單位):

6.7 8.7 7.3 11.4 7.0 6.9 11.7 9.7 10.0 9.7

7.3 8.4 10.6 8.7 7.2 8.7 10.5 9.3 8.4 8.7

整理數(shù)據(jù):按如下分段整理樣本數(shù)據(jù)并補充表格(表1):

用水量

人數(shù)

6

b

4

分析數(shù)據(jù):補全下列表格中的統(tǒng)計量(表2):

平均數(shù)

中位數(shù)

眾數(shù)

8.85

8.7

得出結論:

1)表中的 , ;

2)若用表1中的數(shù)據(jù)制作一個扇形統(tǒng)計圖,所占的扇形圓心角的度數(shù)為 度;

3)如果該小區(qū)有住戶400戶,根據(jù)樣本估計用水量在的居民有多少戶?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,ABACAE是∠CAB的角平分線,BM平分∠ABCAE于點M,經(jīng)過B,M兩點的OBC于點G,交AB于點FFB恰為O的直徑.

1)求證:AEO相切;

2)當BC6cosC,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,,點邊上的一個動點、過點邊于點,把線段繞點旋轉至(點與點對應),點落在線段上,若恰好平分,則的長為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在等腰直角中,斜邊

1)請你在圖邊上求作一點,使得;

2)如圖,在(1)問的條件下,將邊沿方向平移,使得點、、對應點分別為、,連接.若平移的距離為1,求的大小及此時四邊形的面積;

3)將邊沿方向平移個單位至,是否存在這樣的,使得在直線上有一點,滿足,且此時四邊形的面積最大?若存在,求出四邊形面積的最大值及平移距離的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,反比例函數(shù)y=﹣在第二象限的圖象上有一點A,過點AABx軸于點B,則SAOB_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB5,過點BBDAB,點CD都在AB上方,AD交△BCD的外接圓⊙O于點E

1)求證:∠CAB=∠AEC

2)若BC3

ECBD,求AE的長.

②若△BDC為直角三角形,求所有滿足條件的BD的長.

3)若BCEC ,則   .(直接寫出結果即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016廣西賀州市)如圖,將線段AB繞點O順時針旋轉90°得到線段AB,那么A(﹣2,5)的對應點A的坐標是( 。

A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線l1yx2+c,當其函數(shù)值y1時,只有一個自變量x的值與其對應

1)求c的值;

2)將拋物線l1經(jīng)過平移得到拋物線l2yxp21

①若拋物線l2x軸交于A,B兩點(AB的左側),與y軸交于點C,記ABC的外心為P,當﹣1≤p時,求點P的縱坐標的取值范圍;

②當0≤x≤2時,對于拋物線l1上任意點E,拋物線l2上總存在點F,使得點E、F縱坐標相等,求p的取值范圍

查看答案和解析>>

同步練習冊答案