【題目】已知:如圖,在△ABC中,AB=AC,AE是∠CAB的角平分線,BM平分∠ABC交AE于點M,經(jīng)過B,M兩點的⊙O交BC于點G,交AB于點F,FB恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當BC=6,cosC=,求⊙O的半徑.
【答案】(1)詳見解析;(2)⊙O的半徑為.
【解析】
(1)連接OM,證出∠EBM=OMB,得出OM∥BE;由等腰三角形的性質(zhì),得AE⊥BC,則OM⊥AE,從而證明結論;
(2)設⊙O的半徑是r,根據(jù)等腰三角形三線合一的性質(zhì),得BE=CE=3,解直角三角形求得AB=AC=5,則OA=5﹣r,從而根據(jù)平行線分線段成比例定理求解.
(1)證明:連接OM,
∵OB=OM,
∴∠OBM=∠OMB.
∵BM平分∠ABC,
∴∠OBM=∠EBM,
∴∠EBM=∠OMB,
∴OM∥BE.
∵AB=AC,AE是∠CAB的平分線,
∴AE⊥BC,
∴OM⊥AE,
∴AE與⊙O相切;
(2)解:設⊙O的半徑是r.
∵AB=AC,AE是∠CAB的角平分線,,
∴AE⊥BC,BE=CE=3,∠ABC=∠C.
∵,
∴AB=AC===5,
則OA=5﹣r.
∵OM∥BE,
∴=,
即=,
解得r=,
即⊙O的半徑為.
科目:初中數(shù)學 來源: 題型:
【題目】本學期,大興區(qū)開展了“恰同學少年,品詩詞美韻”中華傳統(tǒng)詩詞大賽活動小江統(tǒng)計了班級30名同學四月份的詩詞背誦數(shù)量,具體數(shù)據(jù)如表所示:
詩詞數(shù)量首 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
人數(shù) | 3 | 4 | 4 | 5 | 7 | 5 | 1 | 1 |
那么這30名同學四月份詩詞背誦數(shù)量的眾數(shù)和中位數(shù)分別是
A. 11,7 B. 7,5 C. 8,8 D. 8,7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.
(1)求證:四邊形ABCD是矩形;
(2)若DE=3,OE=9,求AB、AD的長;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近年來,共享單車服務的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,∠BCE=71°,CE=54cm.
(1)求單車車座E到地面的高度;(結果精確到1cm)
(2)根據(jù)經(jīng)驗,當車座E到CB的距離調(diào)整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長.(結果精確到0.1cm)
(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結論:①b<2a;②a+2c﹣b>0;③b>a>c;④b2+2ac<3ab.其中正確結論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】老王面前有兩個容積相同的杯子,杯子甲他裝了三分之一的葡萄酒,杯子乙他裝了半杯的王老吉涼茶,老張過來將裝有涼茶的杯子乙倒?jié)M了酒,老王又將杯子乙中飲料倒一部分到杯子甲,使得兩個杯子的飲料分量相同.然后老王讓老張先選一杯一起喝了,如果老張不想多喝酒,那么他應該選擇( )
A.甲杯B.乙杯C.甲、乙是一樣的D.無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,于,且.點從點出發(fā),沿方向勻速運動,速度為;同時直線由點出發(fā)沿方向勻速運動,速度為,運動過程中始終保持,直線交于,交于,連接,設運動時間為.
(1)___________,__________,_____________;(用含的式子表示)
(2)當四邊形是平行四邊形時,求的值;
(3)當點在線段的垂直平分線上時,求的值;
(4)是否存在時刻,使以為直徑的圓與的邊相切?若存在,直接寫出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在中,點為的中點.
問題發(fā)現(xiàn)
如圖①,若點分別是的中點,連接則線段與的數(shù)量關系是 ___ _,線段與的位置關系是 ___ _;
拓展探究
如圖②,若點分別是上的點,且連接上述結論是否依然成立?若成立,請給出證明;若不成立,請說明理由;
解決問題
當點分別為延長線上的點,且連接直接寫出的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點為雙曲線上的一點,連接并延長與雙曲線在第三象限交于點,為軸正半軸上一點,連接并延長與雙曲線交于點,連接、,已知的面積為6,則點的坐標為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com