【題目】探究:如圖①,直線l1∥l2,點A、B在直線l1上,點C、D在直線l2上,記△ABC的面積為S1,△ABD的面積為S2,求證:S1=S2.
拓展:如圖②,E為線段AB延長線上一點,BE>AB,正方形ABCD、正方形BEFG均在直線AB同側(cè),求證:△DEG的面積是正方形BEFG面積的一半.
應用:如圖③,在一條直線上依次有點A、B、C、D,正方形ABIJ、正方形BCGH、正方形CDEF均在直線AB同側(cè),且點F、H分別是邊CG、BI的中點,若正方形CDEF的面積為l,則△AGI的面積為 .
【答案】探究:見解析;拓展:見解析;應用:8
【解析】
探究:利用平行線的性質(zhì)得到這兩個三角形是同底等高的兩個三角形,所以它們的面積相等;
拓展:連接BD,根據(jù)正方形的性質(zhì)可知,GE∥BD,△DEG與△BGE同底等高,故S△DEG=S△BEG,可求△DEG的面積是正方形BEFG面積的一半;
應用:利用“拓展”解題思路進行解答.
探究:證明:作CM⊥l1于點M,DN⊥l1于點N,如圖①.
∵l1∥l2,
∴CM=DN.
又∵△ABC與△ABD同底,
∴S1=S2;
拓展:證明:連結(jié)BD,如圖②.
∵四邊形ABCD和四邊形BEFG均為正方形,
∴∠ABD=∠BEG=45°.
∴BD∥EG.
由探究中的結(jié)論可得,S△DEG=S△BEG,
∵S△BEG=S正方形BEFG,
∴S△DEG=S正方形BEFG;
應用:解:由“拓展”可得S△AGI=S正方形ABIJ.
如圖③,
∵正方形CDEF的面積為l,
∴CF=.
∵點F、H分別是邊CG、BI的中點,
∴BI=4,即正方形ABIJ的邊長為4.
∴S正方形ABIJ=16.
∴S△AGI=8.
故答案是:8.
科目:初中數(shù)學 來源: 題型:
【題目】在“傳箴言”活動中,某班團支部對該班全體團員在一個月內(nèi)所發(fā)箴言條數(shù)的情況進行了統(tǒng)計,并制成了如圖所示的兩幅不完整的統(tǒng)計圖:
(1)求該班團員在這一個月內(nèi)所發(fā)箴言的平均條數(shù)是多少?并將該條形統(tǒng)計圖補充完整;
(2)如果發(fā)了3條箴言的同學中有兩位男同學,發(fā)了4條箴言的同學中有三位女同學.現(xiàn)要從發(fā)了3條箴言和4條箴言的同學中分別選出一位參加該校團委組織的“箴言”活動總結(jié)會,請你用列表法或樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解市民對全市創(chuàng)文工作的滿意程度,婁星區(qū)某中學數(shù)學興趣小組在婁底城區(qū)范圍內(nèi)進行了抽樣調(diào)查,將調(diào)查結(jié)果分為非常滿意,滿意,一般,不滿意四類,回收、整理好全部問卷后,繪制了兩幅不完整的統(tǒng)計圖1、圖2,結(jié)合圖中信息,回答:
(1)此次共調(diào)查了多少名市民?
(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)若我市城區(qū)共有480000人口,請估算我市對創(chuàng)文工作“非常滿意和滿意”的市民人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+(2m﹣1)x﹣2m(m>0.5)的最低點的縱坐標為﹣4.
(1)求拋物線的解析式;
(2)如圖1,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,D為拋物線上的一點,BD平分四邊形ABCD的面積,求點D的坐標;
(3)如圖2,平移拋物線y=x2+(2m﹣1)x﹣2m,使其頂點為坐標原點,直線y=﹣2上有一動點P,過點P作兩條直線,分別與拋物線有唯一的公共點E、F(直線PE、PF不與y軸平行),求證:直線EF恒過某一定點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=x2+bx的對稱軸為x=1,若關(guān)于x的一元二次方程x2+bx﹣t=0(為實數(shù))在﹣1<x<4的范圍內(nèi)有解,則t的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為4,點O是△ABC的外心,∠FOG=120°.繞點O旋轉(zhuǎn)∠FOG,分別交線段AB、BC于D、E兩點.連接DE給出下列四個結(jié)論:①OD=OE;②S△ODE=S△BDE;③S四邊形ODBE=;④△BDE周長的最小值為6.上述結(jié)論中正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,半徑為1的動圓圓心M從A點出發(fā),沿著AB方向以1個單位長度/每秒的速度勻速運動,同時動點N從點B出發(fā),沿著BD方向也以1個單位長度/每秒的速度勻速運動,設運動的時間為t秒(0≤t≤2.5),以點N為圓心,NB的長為半徑的⊙N與BD,AB的交點分別為E,F,連結(jié)EF,ME.
(1)①當t= 秒時,⊙N恰好經(jīng)過點M;②在運動過程中,當⊙M與△ABD的邊相切時,t= 秒;
(2)當⊙M經(jīng)過點B時,①求N到AD的距離;②求⊙N被AD截得的弦長;
(3)若⊙N與線段ME只有一個公共點時,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線交x軸于點A,交y軸于點B,點P是x軸上一動點,以點P為圓心,以1個單位長度為半徑作⊙P,當⊙P與直線AB相切時,點P的橫坐標是_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O外的一點,CB與⊙O相切于點B,AC交⊙O于點D,點E是上的一點(不與點A,B,D重合),若∠C=48°,則∠AED的度數(shù)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com