【題目】如圖,在四邊形中,,,

1)求證:;

2)若,,求四邊形的面積.

【答案】(1)詳見解析;(2)S四邊形ABCD=56

【解析】

(1)由等角的余角相等可得∠DAC=ABE,再根據(jù)題意可得RtBAERtADC,即可證

(2)根據(jù)勾股定理算出AC,由全等可得BE=AC,再算出△ACD的面積和△ABC的面積相加即可.

(1)BEAC,

∴∠ABE+BAE=90°,

∵BAD=90°,

∴∠BAE+DAC=90°,

∴∠DAC=ABE,

又∵AB=AD,BEA=ACD,

RtBAERtADC(AAS),

BE=AC

(2)AB=10,CD=6,ACD=90°,

,

RtBAERtADC,

BE=AC=8,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點(diǎn)D,DEABAB的延長線于點(diǎn)E,DFAC于點(diǎn)F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABCD的對角線ACBD相交于點(diǎn)O,過點(diǎn)DDPOCDPOC,連接CP.得到四邊形CODP

1)如圖(1),在ABCD中,若∠ABC90°,判斷四邊形CODP的形狀,并證明;

2)如圖(2),在ABCD中,若ABAD,判斷四邊形CODP的形狀,并證明;

3)如圖(3),在ABCD中,若∠ABC90°,且ABAD,判斷四邊形CODP的形狀,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AD平分∠CAE,AD∥BC.

(1)求證:△ABC是等腰三角形.

(2)當(dāng)∠CAE等于多少度時(shí)△ABC是等邊三角形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,菱形ABCD的邊長為6,DAB=60°,點(diǎn)EAB的中點(diǎn),連接AC、EC.點(diǎn)Q從點(diǎn)A出發(fā),沿折線A—D—C運(yùn)動(dòng),同時(shí)點(diǎn)P從點(diǎn)A出發(fā),沿射線AB運(yùn)動(dòng),P、Q的速度均為每秒1個(gè)單位長度;以PQ為邊在PQ的左側(cè)作等邊PQF,PQFAEC重疊部分的面積為S,當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)C時(shí)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t

(1)當(dāng)?shù)冗?/span>PQF的邊PQ恰好經(jīng)過點(diǎn)D時(shí),求運(yùn)動(dòng)時(shí)間t的值;當(dāng)?shù)冗?/span>PQF的邊QF恰好經(jīng)過點(diǎn)E時(shí),求運(yùn)動(dòng)時(shí)間t的值;

(2)在整個(gè)運(yùn)動(dòng)過程中,請求出St之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;

(3)如圖2,當(dāng)點(diǎn)Q到達(dá)C點(diǎn)時(shí),將等邊PQF繞點(diǎn)P旋轉(zhuǎn)α ° (0<α<360°),直線PF 分別與直線AC、直線CD交于點(diǎn)M、N.是否存在這樣的α ,使CMN為等腰三角形?若存在,請直接寫出此時(shí)線段CM的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線甲:y=﹣2x2﹣1和拋物線乙的形狀相同,且兩條拋物線的對稱軸均為y軸,兩點(diǎn)距離5個(gè)單位長度,它們的圖象如圖所示,則拋物線乙的解析式為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形的邊長和一條對角線的長均為2 cm,則菱形的面積為( )

A. 3cm2 B. 4 cm2 C. cm2 D. 2cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖象與x軸、y軸分別交于A、B兩點(diǎn),與反比例函數(shù)的圖象分別交于C、D兩點(diǎn),點(diǎn)D(2,﹣3),點(diǎn)A(-2,0).

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求COD的面積;

(3)直接寫出y1>y2時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸交于點(diǎn)A1,0),頂點(diǎn)坐標(biāo)(1,n),與y軸的交點(diǎn)在(0,3),(0,4)之間(包含端點(diǎn)),則下列結(jié)論:abc03a+b0;③﹣a1a+bam2+bmm為任意實(shí)數(shù));一元二次方程 有兩個(gè)不相等的實(shí)數(shù)根,其中正確的有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

同步練習(xí)冊答案