【題目】如圖,已知一次函數(shù)的圖象與x軸、y軸分別交于A、B兩點,與反比例函數(shù)的圖象分別交于C、D兩點,點D(2,﹣3),點A(-2,0).

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求COD的面積;

(3)直接寫出y1>y2時自變量x的取值范圍.

【答案】(1)y1=﹣x﹣(2);(3)當x﹣4或0<x<2時,y1>y2

【解析】

把點D(2,﹣3),點A(-2,0)代入,然后利用待定系數(shù)法求得一次函數(shù)的解析式;把點D(2,﹣3)代入,利用待定系數(shù)法即可求得反比例函數(shù)的解析式

(2)聯(lián)立兩個解析式求得C的坐標,然后根據SCOD=SAOC+SAOD即可求得COD的面積;

(3)根據圖象即可求得.

解:(1)A(﹣2,0),D(2,﹣3)在y1=k1x+b的圖象上,

,

解得k1=﹣,b=﹣,

∴y1=﹣x﹣;

點D(2,﹣3)在反比例函數(shù)y2=的圖象上,

∴k2=2×(﹣3)=﹣6,

∴y2=﹣;

(2)由,解得,

∴C(﹣4,),

∴SCOD=SAOC+SAOD=×+×2×3=;

(3)當x﹣4或0<x<2時,y1>y2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角三角形△ABC中,∠B90°,AB12cm,BC16cm,點PA開始沿AB邊向點B2cm/s的速度移動,點Q從點B開始沿BC邊向點C4cm/s的速度移動.PQ分別從A,B同時出發(fā),當一個動點到達終點則另一動點也隨之停止運動.設運動時間為t(s)

(1)t為何值時,△PBQ為等腰三角形?

(2)是否存在某一時刻t,使點Q在線段AC的垂直平分線上?

(3)P、Q在運動的過程中,是否存在某一時刻t,直線PQ把△ABC的周長與面積同時分為12兩部分?若存在,求出t,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,,,

1)求證:

2)若,,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小紅用一張長方形紙片ABCD進行折紙,已知該紙片寬AB8cmBC10cm.當小紅折疊時,頂點D落在BC邊上的點F處(折痕為AE).想一想,此時EC有多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD內的△BEC為正三角形,求∠DEA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,,垂足為G,若,則AE的邊長為  

A. B. C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,GCD上一點,延長BCE,使CE=CG,連接BG并延長交DEF.

(1)求證:△BCG≌△DCE;

(2)將△DCE繞點D順時針旋轉90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個自由轉動的轉盤如圖所示,一個分為等份,分別標有數(shù)字,,另一個分為等份,分別標有數(shù)字,,.轉盤上有固定指針,同時轉動兩個轉盤,當轉盤停止轉動后,指針指向的數(shù)字即為轉出的數(shù)字.甲、乙兩人制定游戲規(guī)則如下:一人先猜數(shù),然后另一人再轉動轉盤,若猜出的數(shù)字與轉出的兩個數(shù)字之和相等,則猜數(shù)的人獲勝,否則轉動轉盤的人獲勝.猜數(shù)者可從下面兩種方案中選一種:方案:猜奇數(shù)或猜偶數(shù)其中的一種;方案:猜的整數(shù)倍或猜不是的整數(shù)倍其中的一種.

如果你是猜數(shù)的游戲者,為了盡可能獲勝,你將選擇哪種方案,猜該種方案中的哪一種情況?請說明理由;

為了保證參與游戲雙方的公平性,你應選擇哪種猜數(shù)的方案?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB,坡面AC的傾斜角為45°.為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=3.若新坡角下需留3米寬的人行道,問離原坡角(A點處)10米的建筑物是否需要拆除?(參考數(shù)據: ≈1.414 ≈1.732

查看答案和解析>>

同步練習冊答案