【題目】如圖,在平面直角坐標(biāo)系中,點是原點,四邊形是菱形,點的坐標(biāo)為,點軸的負半軸上,直線軸交于點,軸交于點

1)求直線的解析式;

2)動點從點出發(fā),沿折線方向以1個單位/秒的速度向終點勻速運動,設(shè)的面積為,點的運動時間為秒,求之間的函數(shù)關(guān)系式。

【答案】1;(2.

【解析】

(1)由點A的坐標(biāo),求出OA的長,根據(jù)四邊形ABCO為菱形,利用菱形的四條邊相等得到OC=OA,求出OC的長,即可確定出C的坐標(biāo),設(shè)直線AC解析式為y=kx+b,將AC代入求出kb的值,即可確定出直線AC的解析式;

(2) 對于直線AC解析式,令x=0,得到y的值,即為OE的長,由OD-OE求出DE的長, 當(dāng)點P在線段AB上時,由P的速度為1個單位/秒,時間為t秒,表示出AP,由AB-AP表示出PB,△PEBPB為底邊,DE為高,表示出St的關(guān)系式,并求出t的范圍即可;當(dāng)P在線段BC上時,設(shè)點E到直線BC的距離h,由P的速度為1個單位/秒,時間為t秒,則 BP的長為t-5,△ABC的面積為菱形面積(OC為底,OD為高)的一半,△AEB的面積以AB為底,DE為高,△BECBC為底邊,h為高,利用等量關(guān)系式,建立方程,解出h的值,△PEBBP為底邊,h為高,表示出St的關(guān)系式,并求出t的范圍即可.

解:(1的坐標(biāo)為,

,在中,根據(jù)勾股定理,

,

菱形,

,

設(shè)直線的解析式為:,

代入得:

解得

;

2)令時,得:,則點,

依題意得:,

當(dāng)點在直線上運動時,即

當(dāng)時,

當(dāng)點在直線上時,即當(dāng)時,;設(shè)點E到直線的距離,

,

綜上得:.

故答案為:(1;(2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,A=30°,點P從點A出發(fā)以2cm/s的速度沿折線A﹣C﹣B運動,點Q從點A出發(fā)以a(cm/s)的速度沿AB運動,P,Q兩點同時出發(fā),當(dāng)某一點運動到點B時,兩點同時停止運動.設(shè)運動時間為x(s),APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1,C2兩段組成,如圖2所示.

(1)求a的值;

(2)求圖2中圖象C2段的函數(shù)表達式;

(3)當(dāng)點P運動到線段BC上某一段時APQ的面積,大于當(dāng)點P在線段AC上任意一點時APQ的面積,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計算: 2sin45°+2π01;

2先化簡,再求值 a2b2),其中a=b=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為舉辦校園文化藝術(shù)節(jié),甲、乙兩班準(zhǔn)備給合唱同學(xué)購買演出服裝(一人一套),兩班共92(其中甲班比乙班人多,且甲班不到90),下面是供貨商給出的演出服裝的價格表:

購買服裝的套數(shù)

1套至45

46套至90

91套以上

每套服裝的價格

60

50

40

如果兩班單獨給每位同學(xué)購買一套服裝,那么一共應(yīng)付5020元.

(1)甲、乙兩班聯(lián)合起來給每位同學(xué)購買一套服裝,比單獨購買可以節(jié)省多少錢?

(2)甲、乙兩班各有多少名同學(xué)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為“智慧三角形”.

理解:(1)如圖,已知是⊙上兩點,請在圓上找出滿足條件的點,使為“智慧三角形”(畫出點的位置,保留作圖痕跡);

(2)如圖,在正方形中, 的中點, 上一點,且,試判斷是否為“智慧三角形”,并說明理由;

運用:(3)如圖,在平面直角坐標(biāo)系中,⊙的半徑為,點是直線上的一點,若在⊙上存在一點,使得為“智慧三角形”,其面積的最小值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡求值:

(1)4[62(42)]1,其中= y =1.

(2)已知(a+2)2+|b-3|=0,求(9ab2-3)+(7a2b-2)+2(ab2+1)-2a2b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用如圖1的二維碼可以進行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學(xué)生的識別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,,那么可以轉(zhuǎn)換為該生所在班級序號,其序號為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為,表示該生為5班學(xué)生.表示6班學(xué)生的識別圖案是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲樓AB20 m,乙樓CD10 m,兩棟樓之間的水平距離BD20 m,小麗在乙樓樓頂C處觀測電視塔塔頂E,測得仰角為45°,求電視塔的高度EF

參考數(shù)據(jù):sin37°≈0.6cos37°≈0.8,tan37°≈0.75 ≈1.4,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上有A、B兩點(A在點B的左側(cè)),且兩點距離為12個單位長度,動點P從點A出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0).

1)圖中如果點A、B表示的數(shù)是互為相反數(shù),那么點A表示的數(shù)是__________;

2)當(dāng)t=4秒時,點A與點P之間的距離是___________個長度單位;

3)當(dāng)點A表示的數(shù)是-2時,用含t的代數(shù)式表示點P表示的數(shù);

4)若點P到點A的距離是點P到點B的距離的2倍,請直接寫出t的值.

查看答案和解析>>

同步練習(xí)冊答案