【題目】如圖,等邊△ABC的邊長為6,ADBC邊上的中線,MAD上的動點,EAC邊上一點,若AE=2,EM+CM的最小值為

【答案】

【解析】試題分析:要求EM+CM的最小值,需考慮通過作輔助線轉(zhuǎn)化EMCM的值,從而找出其最小值求解.

解:連接BE,與AD交于點M.則BE就是EM+CM的最小值.

CE中點F,連接DF

等邊△ABC的邊長為6,AE=2,

∴CE=AC﹣AE=6﹣2=4

∴CF=EF=AE=2,

∵ADBC邊上的中線,

∴DF△BCE的中位線,

∴BE=2DF,BE∥DF,

∵EAF的中點,

∴MAD的中點,

∴ME△ADF的中位線,

∴DF=2ME

∴BE=2DF=4ME,

∴BM=BE﹣ME=4ME﹣ME=3ME,

∴BE=BM

在直角△BDM中,BD=BC=3,DM=AD=,

∴BM==

∴BE=

∵EM+CM=BE

∴EM+CM的最小值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(4,0),B(0,3),以線段AB為邊在第一象限內(nèi)作等腰直角三角形ABC,BAC=90°.若第二象限內(nèi)有一點P,且△ABP的面積與△ABC的面積相等.

(1)求直線AB的函數(shù)表達式.

(2)a的值.

(3)x軸上是否存在一點M,使△MAC為等腰三角形?若存在,直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩商場自行定價銷售某一商品.

(1)甲商場將該商品提價15%后的售價為1.15元,則該商品在甲商場的原價為元;

(2)乙商場將該商品提價20%后,用6元錢購買該商品的件數(shù)比沒提價前少買1件,求該商品在乙商場的原價是多少?

(3)在(1)、(2)小題的條件下,甲、乙兩商場把該商品均按原價進行了兩次價格調(diào)整.

甲商場:第一次提價的百分率是,第二次提價的百分率是;

乙商場:兩次提價的百分率都是(

請問甲、乙兩商場,哪個商場的提價較多?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列計算過程,發(fā)現(xiàn)規(guī)律,利用規(guī)律猜想并計算:

1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…

(1)猜想:1+2+3+4+…+n=  

(2)利用上述規(guī)律計算:1+2+3+4+…+200;

(3)嘗試計算:3+6+9+12+…3n的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次質(zhì)檢抽測中,隨機抽取某攤位20袋食鹽,測得各袋的質(zhì)量分別為(單位:G):
492,496,494,495,498,497,501,502,504,496
497,503,506,508,507,492,496,500,501,499
根據(jù)以上抽測結(jié)果,任買一袋該攤位的食鹽,質(zhì)量在497.5g~501.5g之間的概率為( )
A. B C
B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是2015年12月月歷.

(1)如圖,用一正方形框在表中任意框往4個數(shù),記左上角的一個數(shù)為x,則另三個數(shù)用含x的式子表示出來,從小到大依次是 , ,

(2)在表中框住四個數(shù)之和最小記為a1,和最大記為a2,則a1+a2=

(3)當(1)中被框住的4個數(shù)之和等于76時,x的值為多少?

(4)在(1)中能否框住這樣的4個數(shù),它們的和等于92?若能,則求出x的值;若不能,則說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是中國傳統(tǒng)數(shù)學重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.《九章算術》中記載:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,間徑幾何?”(如圖①)
閱讀完這段文字后,小智畫出了一個圓柱截面示意圖(如圖②),其中BO⊥CD于點A,求間徑就是要求⊙O的直徑.
(1)再次閱讀后,發(fā)現(xiàn)AB=寸,CD=寸(一尺等于十寸),通過運用有關知識即可解決這個問題.請你補全題目條件.
(2)幫助小智求出⊙O的直徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC的邊BC的中垂線DM交∠BAC的平分線ADD, DEAB于點EDFACF.連接DB、DC

(1)求證:DBE≌△DFC.

(2)求證:AB+AC=2AE

(3)如圖2,若ABC的邊BC的中垂線DM交∠BAC的外角平分線ADD, DEAB于點E,且AB>AC,寫出AE、BE、AC之間的等量關系。(不需證明,只需在圖2中作出輔助線、說明證哪兩個三角形全等即可)。

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市自來水公司為了鼓勵市民節(jié)約用水,采取分段收費標準. 若某戶居民每月應繳水費y(元)與用水量x(噸)的函數(shù)圖象如圖所示,

(1)分別寫出x≤5x>5的函數(shù)解析式;

(2)觀察函數(shù)圖象,利用函數(shù)解析式,回答自來水公司采取的收費標準;

(3)若某戶居民六月交水費31元,則用水多少噸?

查看答案和解析>>

同步練習冊答案