【題目】觀察下列計(jì)算過(guò)程,發(fā)現(xiàn)規(guī)律,利用規(guī)律猜想并計(jì)算:
1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…
(1)猜想:1+2+3+4+…+n= .
(2)利用上述規(guī)律計(jì)算:1+2+3+4+…+200;
(3)嘗試計(jì)算:3+6+9+12+…3n的結(jié)果.
【答案】(1) (2)20100(3)
【解析】
(1)從1開(kāi)始連續(xù)自然數(shù)的和,等于兩端的數(shù)相加乘數(shù)的個(gè)數(shù),再除以2,由此得出答案即可;
(2)利用(1)的規(guī)律計(jì)算即可;
(3)先提取公因數(shù)3再利用(1)的規(guī)律計(jì)算即可.
(1)1+2+3+4+…+n=;
故答案為:;
(2)1+2+3+4+…+200==20100.
(3)3+6+9+12+…3n=3(1+2+3+4+…+n)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖,已知線(xiàn)段AB上有兩點(diǎn)C,D,且AC=BD,M,N分別是線(xiàn)段AC,AD的中點(diǎn),若AB=acm,AC=BD=bcm,且a,b滿(mǎn)足(a-10)2+=0.
(1)求AB,AC的長(zhǎng)度;
(2)求線(xiàn)段MN的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C= ,△ACD沿AD折疊,使得點(diǎn)C落在斜邊AB上的點(diǎn)E處.
(1)問(wèn):△BDE與△BAC相似嗎?
(2)已知AC=6,BC=8,求線(xiàn)段AD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形OABC的邊OA在數(shù)軸上,O為原點(diǎn),長(zhǎng)方形OABC的面積為12,OC邊長(zhǎng)為3.
(1)數(shù)軸上點(diǎn)A表示的數(shù)為幾.
(2)將長(zhǎng)方形OABC沿OA所在直線(xiàn)水平移動(dòng),移動(dòng)后的長(zhǎng)方形記為O′A′B′C′.
①若移動(dòng)后的長(zhǎng)方形O′A′B′C′與原長(zhǎng)方形OABC重疊部分的面積恰好等于原長(zhǎng)方形OABC面積的一半時(shí),求數(shù)軸上點(diǎn)A′表示的數(shù).
②若D為線(xiàn)段AA′的中點(diǎn),點(diǎn)E在線(xiàn)段OO′上,且OE=OO′,求當(dāng)長(zhǎng)方形OABC移動(dòng)距離x為何值時(shí),D、E兩點(diǎn)到原點(diǎn)O的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=90°,OC,OD分別是∠AOE,∠BOE的平分線(xiàn).
(1)求∠COD的度數(shù);
(2)若∠AOB=α°,其他條件不變,則∠COD= °;
(3)你從(1),(2)的結(jié)果中能發(fā)現(xiàn)什么規(guī)律?(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一條街道旁有A,B,C,D,E五幢居民樓,某大桶水經(jīng)銷(xiāo)商統(tǒng)計(jì)各樓居民每周所需大桶水的數(shù)量如下表:
樓號(hào) | A | B | C | D | E |
大桶水/桶 | 38 | 55 | 50 | 72 | 85 |
他計(jì)劃在這五幢樓中租賃一間門(mén)市房,設(shè)立大桶水供應(yīng)點(diǎn),若僅考慮這五幢樓內(nèi)的居民取水所走路程之和最小,則可以選擇的地點(diǎn)應(yīng)在( ).
A. B樓 B. C樓 C. D樓 D. E樓
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)為6,AD是BC邊上的中線(xiàn),M是AD上的動(dòng)點(diǎn),E是AC邊上一點(diǎn),若AE=2,EM+CM的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線(xiàn)y=x2+(2m﹣1)x+m2﹣1經(jīng)過(guò)坐標(biāo)原點(diǎn),且當(dāng)x<0時(shí),y隨x的增大而減。
(1)求拋物線(xiàn)的解析式;
(2)結(jié)合圖象寫(xiě)出,0<x<4時(shí),直接寫(xiě)出y的取值范圍;
(3)設(shè)點(diǎn)A是該拋物線(xiàn)上位于x軸下方的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)A作x軸的平行線(xiàn)交拋物線(xiàn)于另一點(diǎn)D,再作AB⊥x軸于點(diǎn)B,DC⊥x軸于點(diǎn)C.當(dāng)BC=1時(shí),求出矩形ABCD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OD是∠AOB的平分線(xiàn),OE是∠BOC的平分線(xiàn).
(1)若∠BOC=50°,∠BOA=80°,求∠DOE的度數(shù);
(2)若∠AOC=150°,求∠DOE的度數(shù);
(3)你發(fā)現(xiàn)∠DOE與∠AOC有什么等量關(guān)系?給出結(jié)論并說(shuō)明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com