【題目】如圖,一條街道旁有A,B,C,D,E五幢居民樓,某大桶水經(jīng)銷商統(tǒng)計各樓居民每周所需大桶水的數(shù)量如下表:
樓號 | A | B | C | D | E |
大桶水/桶 | 38 | 55 | 50 | 72 | 85 |
他計劃在這五幢樓中租賃一間門市房,設立大桶水供應點,若僅考慮這五幢樓內(nèi)的居民取水所走路程之和最小,則可以選擇的地點應在( ).
A. B樓 B. C樓 C. D樓 D. E樓
【答案】C
【解析】
此題為數(shù)學知識的應用,由題意設立大桶水供應點,肯定要盡量縮短居民取水所走路程之間的里程,即需應用兩點間線段最短定理來求解.
設AB=a,BC=b,CD=c,DE=d.每戶居民每次取一桶水.
以點A為取水點,則五幢樓內(nèi)的居民取水所走路程之和=55AB+50AC+72AD+85AE=262a+207b+157c+85d,
以點B為取水點,則五幢樓內(nèi)的居民取水所走路程之和=38AB+50BC+72BD+85BE=38a+207b+157c+85d,
以點C為取水點,則五幢樓內(nèi)的居民取水所走路程之和=38AC+55BC+72CD+85CE=38a+93b+157c+85d,
以點D為取水點,則五幢樓內(nèi)的居民取水所走路程之和=38AD+55BD+50CD+85DE=38a+93b+143c+85d,
以點E為取水點,則五幢樓內(nèi)的居民取水所走路程之和=38AE+55BE+50CE+72DE=38a+93b+143c+215d,
以點D為取水點,五幢樓內(nèi)的居民取水所走路程之和最。
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB=108°,OE是∠AOB的平分線,OC在∠AOE內(nèi).
(1)若∠COE=∠AOE,求∠AOC的度數(shù);
(2)若∠BOC-∠AOC=72°,則OB與OC有怎樣的位置關系?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我市美化工程招標時,有甲、乙兩個工程隊投標.經(jīng)測算:甲隊單獨完成這項工程需要60天;若由甲隊先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙隊單獨完成這項工程需要多少天?
(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成該工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的盒子中放有四張分別寫有數(shù)字1,2,3,4的紅色卡片和三張分別寫有數(shù)字1,2,3的藍色卡片,卡片除顏色和數(shù)字外完全相同.
(1)從中任意抽取一張卡片,求該卡片上寫有數(shù)字1的概率;
(2)將3張藍色卡片取出后放入另外一個不透明的盒子內(nèi),然后在兩個盒子內(nèi)各任意抽取一張卡片,以紅色卡片上的數(shù)字作為十位數(shù),藍色卡片上的數(shù)字作為個位數(shù)組成一個兩位數(shù),求這個兩位數(shù)大于22的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列計算過程,發(fā)現(xiàn)規(guī)律,利用規(guī)律猜想并計算:
1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…
(1)猜想:1+2+3+4+…+n= .
(2)利用上述規(guī)律計算:1+2+3+4+…+200;
(3)嘗試計算:3+6+9+12+…3n的結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,已知點A(-3,0)、B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1、△2、△3、△4…,則△2016的直角頂點的坐標為 ( )
A. 8065 B. 8064 C. 8063 D. 8062
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是2015年12月月歷.
(1)如圖,用一正方形框在表中任意框往4個數(shù),記左上角的一個數(shù)為x,則另三個數(shù)用含x的式子表示出來,從小到大依次是 , , .
(2)在表中框住四個數(shù)之和最小記為a1,和最大記為a2,則a1+a2= .
(3)當(1)中被框住的4個數(shù)之和等于76時,x的值為多少?
(4)在(1)中能否框住這樣的4個數(shù),它們的和等于92?若能,則求出x的值;若不能,則說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過點A(1,0),且當x=0和x=5時所對應的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣ +bx+c的圖象分別交于B,C兩點,點B在第一象限.
(1)求二次函數(shù)y=﹣ +bx+c的表達式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點,將點B繞點M旋轉(zhuǎn)180°得到點N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角△ABC中,∠A=90°,∠B=30°,AC=4,以A為圓心,AC長為半徑畫四分之一圓,則圖中陰影部分的面積是(結果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com