【題目】某商店計劃購進甲、乙兩種商品,乙種商品的進價是甲種商品進價的九折,用3600元購買乙種商品要比購買甲種商品多買10件.
(1)求甲、乙兩種商品的進價各是多少元?
(2)該商店計劃購進甲、乙兩種商品共80件,且乙種商品的數(shù)量不低于甲種商品數(shù)量的3倍.甲種商品的售價定為每件80元,乙種商品的售價定為每件70元,若甲、乙兩種商品都能賣完,求該商店能獲得的最大利潤.
【答案】(1)甲、乙兩種商品的進價各是40元/件、36元/件;(2)該商店獲得的最大利潤是2840元.
【解析】
(1)設(shè)甲種商品的進價為x元/件,則乙種商品的進價為0.9x元/件,根據(jù)題意列出分式方程即可求解;
(2)設(shè)甲種商品購進m件,則乙種商品購進(80-m)件,根據(jù)題意寫出總利潤w元,再根據(jù)一次函數(shù)的圖像與性質(zhì)即可求解.
(1)設(shè)甲種商品的進價為x元/件,則乙種商品的進價為0.9x元/件,
,
解得,x=40,
經(jīng)檢驗,x=40是原分式方程的解,
∴0.9x=36,
答:甲、乙兩種商品的進價各是40元/件、36元/件.
(2)設(shè)甲種商品購進m件,則乙種商品購進(80-m)件,總利潤為w元,
w=(80-40)m+(70-36)(80-m)=6m+2720,
∵80-m≥3m,
∴m≤20,
∴當m=20時,w取得最大值,此時w=2840,
答:該商店獲得的最大利潤是2840元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(2,0),以A為圓心作⊙A與y軸切于原點,與x軸的另一個交點為B,過B作⊙A的切線l.
(1)以直線l為對稱軸的拋物線過點A,拋物線與x軸的另一個交點為點C,拋物線的頂點為點E,如果CO=2BE,求此拋物線的解析式;
(2)過點C作⊙A的切線CD,D為切點,求此切線長;
(3)點F是切線CD上的一個動點,當△BFC與△CAD相似時,求出BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,D是等邊三角形ABC外一點,,點E,F分別在上
(1)求證:AD是BC的垂直平分線
(2)若ED平分,求證FD平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是等邊三角形,點是直線上一點,以為一邊在的右側(cè)作等邊.
(1)如圖①,點在線段上移動時,直接寫出和的大小關(guān)系;
(2)如圖②,點在線段的延長線上移動時,猜想的大小是否發(fā)生變化.若不變請求出其大小;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,延長到點,使,交于點,在上取一點,使,連接.有以下結(jié)論:①平分;②;③是等邊三角形;④,則正確的結(jié)論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,切點分別是A、B,直線EF也是⊙O的切線,切點為Q,交PA、PB于點E、F,已知PA=12cm,∠P=40°
(1)求△PEF的周長.
(2)求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AE與BC相交于點F.
(1)求證:FD=DC;
(2)若AE=8,DE=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為6,點P沿△ABC的邊從A→B→C運動,以AP為邊作等邊△APQ,且點Q在直線AB下方,當點P、Q運動到使△BPQ是等腰三角形時,點Q運動路線的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是外一點,,分別和切于,兩點,是上任意一點,過作的切線分別交,于,.
若的周長為,則的長為________;
連接、,若,則的度數(shù)為________度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com