【題目】如圖,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),.
(1)求拋物線的解析式;
(2)點(diǎn)為第一象限拋物線上一點(diǎn),連接、,設(shè)點(diǎn)的橫坐標(biāo)為,的面積為,求與的函數(shù)關(guān)系式;
(3)在(2)的條件下,點(diǎn)為第四象限拋物線上一點(diǎn),連接,過點(diǎn)作軸的垂線交于點(diǎn),射線交第三象限拋物線于點(diǎn),連接,若,,求點(diǎn)的坐標(biāo).
【答案】(1);(2);(3)
【解析】
(1)OB=2OC=4,則點(diǎn)B、C的坐標(biāo)分別為(4,0)、(0,2),將點(diǎn)B、C坐標(biāo)代入函數(shù)表達(dá)式,即可求解;
(2)設(shè)PA交y軸于H,S△ACP=×CH×(xP-xA),先求出直線AP解析式,得出CH長,即可求解;
(3)當(dāng)S=時(shí),t2+t=得t=2,P(2,3),作EF⊥x軸,QM⊥x軸,CR⊥PM,EN⊥QR,
tan∠EBF=,得DH=-m-1,∠QEB=2∠ABE,所以∠QEN=∠EBF,tan∠QEN=tan∠EBF,,得m=1-n,DK=-m+1,tan∠QCR=,,即可求解.
(1)∵OB=2OC=4,
∴點(diǎn)B、C的坐標(biāo)分別為(4,0)、(0,2),
將點(diǎn)B、C坐標(biāo)代入函數(shù)表達(dá)式得:
解得
故函數(shù)的表達(dá)式為:
故答案為:
(2)設(shè)點(diǎn)P(t,t2+t+2),如圖1,設(shè)PA交y軸于點(diǎn)H,
令
解得x=-1或x=4
∴A(-1,0)
設(shè)直線AP解析式為y=kx+b
解得k=(t4),b=(t4)
∴直線AP解析式為:y=(t4)x(t4)
令x=0,y=(t4)
∴CH=2+(t4)=t,
S△ACP=×CH×(xPxA)=×t×(t+1)=t2+t,
(3)當(dāng)S=時(shí),t2+t=
得t=2,
∴P(2,3),
如圖2,作EF⊥x軸,QM⊥x軸,CR⊥PM,EN⊥QR,
設(shè)E(m,m2+m+2),Q(n,n2+n+2),
∵tan∠EBF=,
∴
得DH=m1,
∵∠QEB=2∠ABE,
∴∠QEN=∠EBF
tan∠QEN=tan∠EBF, 即,
∴
得m=1n,
DK=m+1,tan∠QCR=
∴
解得:n=6,
故點(diǎn)Q(6,7)
故答案為:Q(6,7)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開展了尋找古樹活動(dòng).如圖,在一個(gè)坡度(或坡比)i=1:2.4的山坡AB上發(fā)現(xiàn)有一棵古樹CD.測(cè)得古樹底端C到山腳點(diǎn)A的距離AC=26米,在距山腳點(diǎn)A水平距離6米的點(diǎn)E處,測(cè)得古樹頂端D的仰角∠AED=48°(古樹CD與山坡AB的剖面、點(diǎn)E在同一平面上,古樹CD與直線AE垂直),則古樹CD的高度約為多少米?(參考數(shù)據(jù):sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C作⊙O的切線交AB的延長線于點(diǎn)D,已知∠D=30°.
(1)求∠A的度數(shù);
(2)若點(diǎn)F在⊙O上,CF⊥AB,垂足為E,CF=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)所在年級(jí)的500名學(xué)生參加志愿者活動(dòng),現(xiàn)有以下5個(gè)志愿服務(wù)項(xiàng)目:A,紀(jì)念館志講解員.B.書香社區(qū)圖書整理C.學(xué)編中國結(jié)及義賣.D,家風(fēng)講解員E.校內(nèi)志愿服務(wù),要求:每位學(xué)生都從中選擇一個(gè)項(xiàng)目參加,為了了解同學(xué)們選擇這個(gè)5個(gè)項(xiàng)目的情況,該同學(xué)隨機(jī)對(duì)年級(jí)中的40名同學(xué)選擇的志愿服務(wù)項(xiàng)目進(jìn)行了調(diào)查,過程如下:
收集數(shù)據(jù):設(shè)計(jì)調(diào)查問卷,收集到如下數(shù)據(jù)(志愿服務(wù)項(xiàng)目的編號(hào),用字母代號(hào)表示)
B,E,B,A,E,C,C,C,B,B,
A,C,E,D,B,A,B,E,C,A,
D,D,B,B,C,C,A,E,B
C,B,D,C,A,C,C,A,C,E,
(1)整理、描述詩句:劃記、整理、描述樣本數(shù)據(jù),繪制統(tǒng)計(jì)圖如下,請(qǐng)補(bǔ)全統(tǒng)計(jì)表和統(tǒng)計(jì)圖
選擇各志愿服務(wù)項(xiàng)目的人數(shù)統(tǒng)計(jì)表
志愿服務(wù)項(xiàng)目 | 劃記 | 人數(shù) |
A.紀(jì)念館志愿講解員 | 正 | 8 |
B.書香社區(qū)圖書整理 | ||
C.學(xué)編中國結(jié)及義賣 | 正正 | 12 |
D.家風(fēng)講解員 | ||
E.校內(nèi)志愿服務(wù) | 正 一 | 6 |
合計(jì) | 40 | 40 |
分析數(shù)據(jù)、推斷結(jié)論
(2)抽樣的40個(gè)樣本數(shù)據(jù)(志愿服務(wù)項(xiàng)目的編號(hào))的眾數(shù)是 (填A﹣E的字母代號(hào))
(3)請(qǐng)你任選A﹣E中的兩個(gè)志愿服務(wù)項(xiàng)目,根據(jù)該同學(xué)的樣本數(shù)據(jù)估計(jì)全年級(jí)大約有多少名同學(xué)選擇這兩個(gè)志愿服務(wù)項(xiàng)目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,每個(gè)小正方形的邊長均為1,的三個(gè)頂點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖1中畫一個(gè)(點(diǎn)在小正方形的頂點(diǎn)上),使的周長等于的周長,且以、、、為頂點(diǎn)的四邊形是軸對(duì)稱圖形;
(2)在圖2中畫(點(diǎn)在小正方形的頂點(diǎn)上),使的周長等于的周長,且以、、、為頂點(diǎn)的四邊形是中心對(duì)稱圖形;
(3)直接寫出圖2中四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)和二次函數(shù)部分自變量和對(duì)應(yīng)的函數(shù)值如下表:
…… | …… | ||||||
…… | …… | ||||||
…… | …… |
(1)求的表達(dá)式;
(2)關(guān)于的不等式的解集是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《小豬佩奇》這部動(dòng)畫片,估計(jì)同學(xué)們都非常喜歡.周末,小豬佩奇一家4口人(小豬佩奇,小豬喬治,小豬媽媽,小豬爸爸)到一家餐廳就餐,包廂有一圓桌,旁邊有四個(gè)座位(,,,).
(1)小豬佩奇隨機(jī)坐到座位的概率是________;
(2)若現(xiàn)在由小豬佩奇,小豬喬治兩人先后選座位,用樹狀圖或列表的方法計(jì)算出小豬佩奇和小豬喬治坐對(duì)面的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,的直徑,點(diǎn)是延長線上的一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,連接.
(1)若,求的長;
(2)若點(diǎn)在的延長線上運(yùn)動(dòng),的平分線交于點(diǎn),你認(rèn)為的大小是否發(fā)生變化?若變化,請(qǐng)說明理由;若不變化,求出的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某市市民上班時(shí)最常用的交通工具的情況,隨機(jī)抽取了部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“:自行車,:家庭汽車,:公交車,:電動(dòng)車,:其他”五個(gè)選項(xiàng)中選擇最常用的一項(xiàng),將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問題.
(1)本次調(diào)查中,一共調(diào)查了 名市民;扇形統(tǒng)計(jì)圖中,項(xiàng)對(duì)應(yīng)的扇形圓心角是_____ ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若甲上班時(shí)從三種交通工具中隨機(jī)選擇一種, 乙上班時(shí)從三種交通工具中隨機(jī)選擇一種,請(qǐng)用列表法或畫樹狀圖的方法,求出甲、乙兩人都不選種交通工具上班的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com