【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護區(qū)開展了尋找古樹活動.如圖,在一個坡度(或坡比)i1:2.4的山坡AB上發(fā)現(xiàn)有一棵古樹CD.測得古樹底端C到山腳點A的距離AC26米,在距山腳點A水平距離6米的點E處,測得古樹頂端D的仰角∠AED48°(古樹CD與山坡AB的剖面、點E在同一平面上,古樹CD與直線AE垂直),則古樹CD的高度約為多少米?(參考數(shù)據(jù):sin48°≈0.73,cos48°≈0.67tan48°≈1.11

【答案】古樹CD的高度約為23.3m

【解析】

延長DCEA的延長線于點F,則CFEF,設(shè)CFk,由i1:2.4,則AF2.4k,在RtACF中,根據(jù)勾股定理得到列方程求k值,從而求得CF的長,然后在RtDEF中,利用tanE解直角三角形求得DF的長,從而使問題得解.

解:延長DCEA的延長線于點F,則CFEF

∴設(shè)CFk,由i1:2.4,則AF2.4k,

RtACF中,由勾股定理得,

CF2+AF2=AC2

k2(2.4k)2262,

解得k10

AF24,CF10

EF30

RtDEF中,tanE,

DFEFtanE30×tan48°30×1.1133.3

CDDFCF23.3

因此,古樹CD的高度約為23.3m

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】廣闊無垠的太空中有無數(shù)顆恒星,其中離太陽系最近的一顆恒星稱為“比鄰星”,它距離太陽系約4.2光年.光年是天文學中一種計量天體時空距離的長度單位,1光年約為9500000000000千米.則“比鄰星”距離太陽系約為( )

A. 千米B. 千米C. 千米D. 千米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護區(qū)開展了尋找古樹活動.如圖,在一個坡度(或坡比)i1:2.4的山坡AB上發(fā)現(xiàn)有一棵古樹CD.測得古樹底端C到山腳點A的距離AC26米,在距山腳點A水平距離6米的點E處,測得古樹頂端D的仰角∠AED48°(古樹CD與山坡AB的剖面、點E在同一平面上,古樹CD與直線AE垂直),則古樹CD的高度約為多少米?(參考數(shù)據(jù):sin48°≈0.73,cos48°≈0.67,tan48°≈1.11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是等腰三角形,AB=AC

1)特殊情形:如圖1,當DE∥BC時,有DB EC.(填,“=”

2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點A順時針旋轉(zhuǎn)αα180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請說明理由.

3)拓展運用:如圖3,P是等腰直角三角形ABC內(nèi)一點,∠ACB=90°,且PB=1PC=2,PA=3,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,A8,0),B0,6),∠BAO,∠ABO的平分線相交于點C,過點CCDx軸交AB于點D,則點D的坐標為( 。

A. ,2B. ,1C. ,2D.,1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某酒店計劃購買一批換氣扇,已知購買2型換氣扇和2型換氣扇共需220元;購買3型換氣扇和1型換氣扇共需200元.

1)求兩種型號的換氣扇的單價.

2)若該酒店準備同時購進這兩種型號的換氣扇共60臺,并且型換氣扇的數(shù)量不多于型換氣扇數(shù)量的2倍,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將矩形紙片放在平面直角坐標系中,為坐標原點,軸上,點軸上,點的坐標是,點是邊上的-一個動點,將沿折疊,使點落在點處.

如圖①.當點恰好落在上時,求點的坐標;

(2)如圖②,當點中點時,直線點,

求證:;

求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們把具有一條公共邊的兩個三角形稱為友鄰三角形,兩個三角形的公共邊所對的頂點稱為“友鄰頂點”.

1)如圖1,寫出圖中所有的“友鄰三角形”;

2)如圖2,相交于點,記的面積為,的面積為,求證:;

3)從圖3中找出兩對“友鄰三角形”,探索是否存在(2)中類似的結(jié)論,并直接寫出結(jié)果;

4)如圖4,,若的面積為21,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于、兩點,與軸交于點

1)求拋物線的解析式;

2)點為第一象限拋物線上一點,連接、,設(shè)點的橫坐標為,的面積為,求的函數(shù)關(guān)系式;

3)在(2)的條件下,點為第四象限拋物線上一點,連接,過點軸的垂線交于點,射線交第三象限拋物線于點,連接,若,,求點的坐標.

查看答案和解析>>

同步練習冊答案