【題目】(1)已知函數(shù)的圖象與反比例函數(shù)的圖象的一個交點為A,則= ________.
(2)如果滿足,試求代數(shù)式的值.
(3)已知,,求的值.
【答案】(1);(2)5;(3)-5.
【解析】
(1)把點A(a,b)代入兩個函數(shù)的解析式可得:b-a=5,ab=-2,將化簡為,然后代值計算即可;
(2)由題題意可知:,因此由可得:,由此可得,這樣由即可求得所求的值了;
(3)將的值化簡,再將化簡的結(jié)果代入中計算即可.
(1)∵函數(shù)y=x+5的圖象與反比例函數(shù)y=-的圖象的一個交點為A(a,b),
∴b=a+5,ab=-2,
∴b-a=5,
∴;
故答案為:;
(2)∵x2-3x+1=0,x≠0
∴x-3+=0,
∴x+=3,
∴(x-)2=(x+)2-4=32-4=5;
(3)∵a==-2-,b==-2+,
∴a+b+ab
=-2--2++(-2-)(-2+)
=-4+(-1)
=-5.
科目:初中數(shù)學 來源: 題型:
【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上,另一個頂
點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),
則三角板的最大邊的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學每天中午總是在規(guī)定時間打開學校大門,七年級同學小明每天中午同一時間從家騎自行車到學校,星期一中午他以每小時15千米的速度到校,結(jié)果在校門口等了6分鐘才開門,星期二中午他以每小時9千米的速度到校,結(jié)果校門已開了6分鐘,星期三中午小明想準時到達學校門口,那么小明騎自行車的速度應該為每小時多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,BC=5,∠ABC=60°,平行四邊形ABCD的對角線AC、BD交于點O,過點O作OE⊥AD,則OE= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸交于點B,與y軸交于點A,以線段AB為邊,在第一象限內(nèi)作正方形ABCD,點C落在雙曲線()上,將正方形ABCD沿x軸負方向平移a個單位長度,使點D恰好落在雙曲線()上的點D1處,則a= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠ABC=90°,D為AC邊上中點,過D點作DE⊥DF,交AB于E,交BC于F,若S四邊形BFDE=9,則AB的長為:
A. 3 B. 6 C. 9 D. 18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料: 小騰遇到這樣一個問題:如圖1,在△ABC中,點D在線段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的長.
小騰發(fā)現(xiàn),過點C作CE∥AB,交AD的延長線于點E,通過構(gòu)造△ACE,經(jīng)過推理和計算能夠使問題得到解決(如圖 2).
請回答:求∠ACE的度數(shù),AC的長.
參考小騰思考問題的方法,解決問題:
如圖 3,在四邊形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC與BD交于點E,AE=2,BE=2ED,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知點A(a,0),B(0,b),且a、b滿足=0, □ABCD的邊AD與y軸交于點E(0,2),且E為AD中點,雙曲線經(jīng)過C、D兩點.
(1)求k的值;
(2)點P在雙曲線上,點Q在y軸上,若以點A、B、P、Q為頂點的四邊形是平行四邊形,試求滿足要求的所有點P、Q的坐標;
(3)以線段AB為對角線作正方形AFBH(如圖3),點T是邊AF上一動點,M是HT的中點,MN⊥HT,交AB于N,當T在AF上運動時,的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請求出其值,并給出你的證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com