【題目】如圖,已知在中,,點(diǎn)是的中點(diǎn),連結(jié)并延長(zhǎng),與的延長(zhǎng)線相交于點(diǎn),連接,若,,則四邊形的面積是( )
A. B. C. 10D.
【答案】A
【解析】
由已知易得四邊形AFBD是平行四邊形,又由于AD=BC=BD可知是菱形,BA與DF垂直平分,而tan∠BDC=tan∠EBD==2,AD=BD=5,即可求出BE,DE. 根據(jù)菱形面積等于四倍的△BED的面積,可得結(jié)果.
解:∵在中,AD//BC,
∴∠DAB=∠ABF,∠ADF=∠BFD,
在△ADE和△BFE中,
,
∴△ADE≌△BFE,
∴AD=BF,
∴四邊形AFBD是平行四邊形,
又∵BD=BC,
∴AD=BD
∴是菱形
∴DF⊥AB,DE=EF,AE=BE.
∵CD∥AB,
∴∠BDC=∠EBD
∴tan∠BDC=tan∠EBD==2,
∵BD=BC=AD=5,
∴BD2=BE2+DE2=5BE2,
∴BE=,DE=2,
∴S四邊形AFBD=DE×BE×4=×2××4=20.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心是(2,a),半徑為2,直線y=﹣x與⊙P相交于A、B兩點(diǎn),若弦AB的長(zhǎng)為2,則a的值是( 。
A. ﹣2B. ﹣2+C. ﹣2﹣D. ﹣2﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y= 的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關(guān)系是( )
A. y1<y2<y3B. y2<y3<y1C. y3<y2<y1D. y2<y1<y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線L:y=ax2+bx+3與x軸交于A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求拋物線的函數(shù)表達(dá)式及頂點(diǎn)D的坐標(biāo);
(2)若將拋物線L沿y軸平移后得到拋物線L′,拋物線L′經(jīng)過(guò)點(diǎn)E(4,1),與y軸的交點(diǎn)為C′,頂點(diǎn)為D′,在拋物線L′上是否存在點(diǎn)M,使得△MCC′的面積是△MDD′面積的2倍?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若四邊形的一條對(duì)角線把四邊形分成兩個(gè)等腰三角形,則這條對(duì)角線叫做這個(gè)四邊形的“巧分線”,這個(gè)四邊形叫“巧妙四邊形”,若一個(gè)四邊形有兩條巧分線,則稱為“絕妙四邊形.
(1)下列四邊形一定是巧妙四邊形的是 .(填序號(hào))
①平行四邊形;②矩形;③菱形;④正方形.
(初步應(yīng)用)
(2)如圖,在絕妙四邊形ABCD中,AC=AD,且AC垂直平分BD,若∠BAD=80°,求∠BCD的度數(shù).
(深入研究)
(3)在巧妙四邊形ABCD中,AB=AD=CD,∠A=90°,AC是四邊形ABCD的巧分線,請(qǐng)直接寫出∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,拋物線y=a(x﹣4)2﹣16(a>0)交x軸于點(diǎn)E,F(E在F的左邊),交y軸于點(diǎn)C,對(duì)稱軸MN交x軸于點(diǎn)H;直線y=x+b分別交x,y軸于點(diǎn)A,B.
(1)寫出該拋物線頂點(diǎn)D的坐標(biāo)及點(diǎn)C的縱坐標(biāo)(用含a的代數(shù)式表示).
(2)若AF=AH=OH,求證:∠CEO=∠ABO.
(3)當(dāng)b>﹣4時(shí),以AB為邊作正方形,使正方形的另外兩個(gè)頂點(diǎn)一個(gè)落在拋物線上,一個(gè)落在拋物線的對(duì)稱軸上,求所有滿足條件的a及相應(yīng)b的值.(直接寫出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】暑假到了,即將迎來(lái)手機(jī)市場(chǎng)的銷售旺季.某商場(chǎng)銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4000 | 2500 |
售價(jià)(元/部) | 4300 | 3000 |
該商場(chǎng)計(jì)劃投入15.5萬(wàn)元資金,全部用于購(gòu)進(jìn)兩種手機(jī)若干部,期望全部銷售后可獲毛利潤(rùn)不低于2萬(wàn)元.(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)若商場(chǎng)要想盡可能多的購(gòu)進(jìn)甲種手機(jī),應(yīng)該安排怎樣的進(jìn)貨方案購(gòu)進(jìn)甲乙兩種手機(jī)?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在甲種手機(jī)購(gòu)進(jìn)最多的方案上,減少甲種手機(jī)的購(gòu)進(jìn)數(shù)量,增加乙種手機(jī)的購(gòu)進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過(guò)16萬(wàn)元,該商場(chǎng)怎樣進(jìn)貨,使全部銷售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA、PB是半徑為1的⊙O的兩條切線,點(diǎn)A、B分別為切點(diǎn),∠APB=60°,OP與弦AB交于點(diǎn)C,與⊙O交于點(diǎn)D.陰影部分的面積是_____(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=﹣(x﹣2)2+b的圖象與x軸分別相交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,0),與y軸交于點(diǎn)C.
(1)求b的值;
(2)拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),點(diǎn)P(2,m)是線段EF上一動(dòng)點(diǎn),Q(n,0)在x軸上,且n<2,若∠QPC=90°,求n的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com