某地區(qū)為了進(jìn)一步緩解交通擁堵問題,決定修建一條長為6千米的公路.如果平均每天的修建費(fèi)y(萬元)與修建天數(shù)x(天)之間在30≤x≤120,具有一次函數(shù)的關(guān)系,如下表所示.
x
50
60
90
120
y
40
38
32
26
(1)求y關(guān)于x的函數(shù)解析式;
(2)后來在修建的過程中計(jì)劃發(fā)生改變,政府決定多修2千米,因此在沒有增減建設(shè)力量的情況下,修完這條路比計(jì)劃晚了15天,求原計(jì)劃每天的修建費(fèi).
解:(1)設(shè)y與x之間的函數(shù)關(guān)系式為,由題意,得
,解得:
∴y與x之間的函數(shù)關(guān)系式為:(30≤x≤120)。
(2)設(shè)原計(jì)劃要m天完成,則增加2km后用了(m+15)天,由題意,得
,解并檢驗(yàn)得:m=45。

答:原計(jì)劃每天的修建費(fèi)為41萬元。
(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,運(yùn)用待定系數(shù)法就可以求出y與x之間的函數(shù)關(guān)系式;
(2)設(shè)原計(jì)劃要m天完成,則增加2km后用了(m+15)天,根據(jù)每天修建的工作量不變建立方程求出其解,就可以求出計(jì)劃的時間,然后代入(1)的解析式就可以求出結(jié)論。
 B卷(共60分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某物體從P點(diǎn)運(yùn)動到Q點(diǎn)所用時間為7秒,其運(yùn)動速度v(米每秒)關(guān)于時間t(秒)的函數(shù)關(guān)系如圖所示.某學(xué)習(xí)小組經(jīng)過探究發(fā)現(xiàn):該物體前進(jìn)3秒運(yùn)動的路程在數(shù)值上等于矩形AODB的面積.由物理學(xué)知識還可知:該物體前t(3<t≤7)秒運(yùn)動的路程在數(shù)值上等于矩形AODB的面積與梯形BDNM的面積之和.

根據(jù)以上信息,完成下列問題:
(1)當(dāng)3<t≤7時,用含t的式子表示v;
(2)分別求該物體在0≤t≤3和3<t≤7時,運(yùn)動的路程s(米)關(guān)于時間t(秒)的函數(shù)關(guān)系式;
(3)求該物體從P點(diǎn)運(yùn)動到Q總路程的時所用的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某生物小組觀察一植物生長,得到植物高度y(單位:厘米)與觀察時間x(單位:天)的關(guān)系,并畫出如圖所示的圖象(AC是線段,直線CD平行x軸).

(1)該植物從觀察時起,多少天以后停止長高?
(2)求直線AC的解析式,并求該植物最高長多少厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某游泳池有水4000m3,先放水清洗池子.同時,工作人員記錄放水的時間x(單位:分鐘)與池內(nèi)水量y(單位:m3) 的對應(yīng)變化的情況,如下表:
時間x(分鐘)

10
20
30
40

水量y(m3

3750
3500
3250
3000

(1)根據(jù)上表提供的信息,當(dāng)放水到第80分鐘時,池內(nèi)有水多少m3?
(2)請你用函數(shù)解析式表示y與x的關(guān)系,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

圖中給出的直線和反比例函數(shù)的圖像,判斷下列結(jié)論正確的個數(shù)有(    )
;②直線 與坐標(biāo)軸圍成的△ABO的面積是4;③方程組的解為, ;④當(dāng)-6<x<2時,有 .
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知一次函數(shù),若隨著的增大而減小,則該函數(shù)圖象經(jīng)過(    )
A.第一、二、三象限 B.第一、二、四象限
C.第二、三、四象限D.第一、三、四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某飲料廠以300千克的A種果汁和240千克的B種果汁為原料,配制生產(chǎn)甲、乙兩種新型飲料,已知每千克甲種飲料含0.6千克A種果汁,含0.3千克B種果汁;每千克乙種飲料含0.2千克A種果汁,含0.4千克B種果汁.飲料廠計(jì)劃生產(chǎn)甲、乙兩種新型飲料共650千克,設(shè)該廠生產(chǎn)甲種飲料x(千克).
(1)列出滿足題意的關(guān)于x的不等式組,并求出x的取值范圍;
(2)已知該飲料廠的甲種飲料銷售價是每1千克3元,乙種飲料銷售價是每1千克4元,那么該飲料廠生產(chǎn)甲、乙兩種飲料各多少千克,才能使得這批飲料銷售總金額最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某服裝店以每件40元的價格購進(jìn)一批襯衫,在試銷過程中發(fā)現(xiàn):每月銷售量y(件)與銷售單價x(x為正整數(shù))(元)之間符合一次函數(shù)關(guān)系,當(dāng)銷售單價為55元時,月銷售量為140件;當(dāng)銷售單價
為70元時,月銷售量為80件.
(1)求y與x的函數(shù)關(guān)系式;
(2)如果每銷售一件襯衫需支出各種費(fèi)用1元,設(shè)服裝店每月銷售該種襯衫獲利為w元,求w與x之間的函數(shù)關(guān)系式,并求出銷售單價定為多少元時,商場獲利最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

列函數(shù)中,y隨x的增大而減少的函數(shù)是【   】
A.y=2x+8B.y=﹣2+4xC.y=﹣2x+8D.y=4x

查看答案和解析>>

同步練習(xí)冊答案