【題目】某公園的門票價格如下表所示:

購票人數(shù)

150

51100

100人以上

每人門票價

20

17

14

某校初一(1)(2)兩個班去游覽公園,其中(1)班人數(shù)較少,不足50人,(2)班人數(shù)較多,超過50人,但是不超過100人.如果兩個班都以班為單位分別購票,則一共應(yīng)付1912元;如果兩個班聯(lián)合起來,作為個團體購票,則只需付1456

1)列方程或方程組求出兩個班各有多少學(xué)生?

2)若(1)班全員參加,(2)班有20人不參加此次活動,請你設(shè)計一種最省錢方式來幫他們買票,并說明理由.

3)你認(rèn)為是否存在這樣的可能:51100人之間買票的錢數(shù)與100人以上買票的錢數(shù)相等?如果有,是多少人與多少人買票錢數(shù)相等?(直接寫結(jié)果)

【答案】1)初一(1)班有48人,初一(2)班有56人;(2)兩個班聯(lián)合起來買101張門票最省錢;理由見解析;(384人和102人或98人和119人買票錢數(shù)相等.

【解析】

1)由兩班人數(shù)之和為整數(shù)可得出初一(1)(2)兩個班的人數(shù)之和大于100,設(shè)初一(1)班有人,初一(2)班有y人,根據(jù)總價=單價×數(shù)量,即可得出二元一次方程組,解之即可;
2)求出參加活動的人數(shù),利用總價=單價×數(shù)量,分別求出購買84張門票及101張門票所需錢數(shù),比較后即可得出結(jié)論;
3)設(shè)m人與n人買票錢數(shù)相等(51m100,n101),根據(jù)總價=單價×數(shù)量且總價相等,即可得出關(guān)于m,n的二元一次方程,結(jié)合m,n為正整數(shù)及其范圍,即可求出mn的值.

(1)如果初一(1)(2)兩個班的人數(shù)之和不大于100,

1456÷17=85(人)(元),不符合題意,

∴初一(1)(2)兩個班的人數(shù)之和大于100

設(shè)初一(1)班有x人,初一(2)班有y人,

依題意,得:,

解得:

答:初一(1)班有48人,初一(2)班有56人;

(2)48+(5620)=84(人).

兩個班合起來買84張門票所需錢數(shù)為:84×17=1428(元),

兩個班合起來買101張門票所需錢數(shù)為:101×14=1414(元),

14141428

∴兩個班合起來買101張門票最省錢;

(3)設(shè)m人與n人買票錢數(shù)相等(51m100,n101),

依題意,得:17m=14n

m14的整數(shù)倍,n17的整數(shù)倍,

答:84人和102人或98人和119人買票錢數(shù)相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用分式方程解決問題:元旦假期有兩個小組去攀登- -座高h米的山,第二組的攀登速度是第- -組的a.

(1),兩小組同時開始攀登,結(jié)果第二組比第一組早到達(dá)頂峰.求兩個小組的攀登速度.

(2)若第二組比第一組晚出發(fā),結(jié)果兩組同時到達(dá)頂峰,求第二組的攀登速度比第一組快多少? (用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上有A、BC三點,分別表示有理數(shù)﹣26,﹣10,10,動點PA出發(fā),以每秒1個單位的速度向右移動,當(dāng)P點運動到C點時運動停止,設(shè)P移動時間為t。

(1)用含t的代數(shù)式表示P到點A和點C的距離:PA=_____,PC=_____

(2)當(dāng)點P運動到B點時,點QA出發(fā),以每秒3個單位的速度向右運動,求t等于多少秒時PQ兩點相遇?t等于多少秒時P、Q兩點相距4個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校組織團員舉行申奧成功宣傳活動,從學(xué)校騎車出發(fā),先上坡到達(dá)A地后,宣傳8分鐘;然后下坡到B地宣傳8分鐘返回,行程情況如圖.若返回時,上、下坡速度仍保持不變,在A地仍要宣傳8分鐘,那么他們從B地返回學(xué)校用的時間是(

A. 45.2分鐘 B. 48分鐘 C. 46分鐘 D. 33分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系中如圖所示,

1SABC 

2x軸上是否存在點P,使得SBCP2SABC,若不存在,說明理由;若存在,求出P點的坐標(biāo).

3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y =(2m+1) x+ m-3

(1) 若函數(shù)圖象經(jīng)過原點,m的值.

(2) 若函數(shù)圖象在y軸的交點的縱坐標(biāo)為-2,求m的值.

(3)若函數(shù)的圖象平行直線y=-3x–3,求m的值.

(4)若這個函數(shù)是一次函數(shù),y隨著x的增大而減小,m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)興趣小組活動中,小明進行數(shù)學(xué)探究活動.將邊長為2的正方形ABCD與邊長為3的正方形AEFG按圖1位置放置,ADAE在同一條直線上,ABAG在同一條直線上.

(1)小明發(fā)現(xiàn)DG=BEDGBE,請你給出證明.

(2)如圖2,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當(dāng)點B恰好落在線段DG上時,請你幫他求出此時△ADG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過點A6,0)的直線ykx3與直線y=﹣x交于點B,點P從點O出發(fā)以每秒1個單位長度的速度向點A勻速運動.

1)求點B的坐標(biāo);

2)當(dāng)△OPB是直角三角形時,求點P運動的時間;

3)當(dāng)BP平分△OAB的面積時,直線BPy軸交于點D,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系可中,直線yx+1y=﹣x+3交于點A,分別交x軸于點B和點C,點D是直線AC上的一個動點.

(1)求點AB,C的坐標(biāo);

(2)在直線AB上是否存在點E使得四邊形EODA為平行四邊形?存在的話直接寫出的值,不存在請說明理由;

(3)當(dāng)△CBD為等腰三角形時直接寫出D坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案