精英家教網(wǎng)如圖,D為△ABC的邊BC上一點,已知AB=13,AD=12,AC=15,BD=5,則BC的長為
 
分析:∵AD2+BD2=AB2∴AD⊥BC(勾股定理逆定理),在直角△ADC中,已知AD,AC即可求得CD,則BC=BD+DC.
解答:解:∵AD2+BD2=144+25=169,
AB2=169,∴AD2+BD2=AB2
∴AD⊥BC(勾股定理逆定理),
∠ADC=90°,
∴CD=
AC2-AD2
=
152-122
=9,
∴BC=CD+BD=5+9=14.
故答案為14.
點評:本題考查了勾股定理的逆定理和勾股定理的運用,本題中根據(jù)勾股定理的逆定理確定AD⊥BC是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

6、如圖,⊙O為△ABC的外接圓,BC為直徑,AC=AB,則∠D的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、如圖,AD為△ABC的高,E為AC上一點,BE交AD于F,且有BF=AC,F(xiàn)D=CD,那么BE⊥AC嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O為△ABC的內(nèi)切圓,∠C=90度,OA的延長線交BC于點D,AC=4,CD=1,則⊙O的半徑等于(  )
A、
4
5
B、
5
4
C、
3
4
D、
5
6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖,⊙O為△ABC的外接圓,且∠A=30°,AB=8cm,BC=5cm,則⊙O的半徑=
5
cm,點O到AB的距離為
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,G為△ABC的重心,其中∠C=90°,D在AB上,GD⊥AB.若AB=29,AC=20,BC=21,則GD的長度為何?( 。
A、7
B、14
4
9
C、
140
29
D、
420
29

查看答案和解析>>

同步練習冊答案