【題目】如圖,中,,,于點(diǎn)E,于點(diǎn)D,BE與AD相交于F.
求證:;
若,求AF的長.
【答案】(1)證明見解析(2)AF=3
【解析】
(1)根據(jù)等腰三角形腰長相等性質(zhì)可得AD=BD,即可求證△BDF≌△ACD,即可解答;
(2)連接CF,根據(jù)全等三角形的性質(zhì)得到DF=DC,得到△DFC是等腰直角三角形.推出AE=EC,BE是AC的垂直平分線.于是得到結(jié)論.
解:(1)AD⊥BD,∠BAD=45°,
∴AD=BD,
∵∠BFD=∠AFE,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,
∴∠BFD=∠ACD,
在△BDF和△ACD中,
∴△BDF≌△ACD(AAS),
∴BF=AC;
(2)連接CF,
∵△BDF≌△ADC,
∴DF=DC,
∴△DFC是等腰直角三角形.
∵CD=3,CF=CD=3,
∵AB=BC,BE⊥AC,
∴AE=EC,BE是AC的垂直平分線.
∴AF=CF,
∴AF=3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在一個長方形的草坪ABCD中,修了一條A-E-C的小路.AB=12米,BC=16米,AE=11米.極個別同學(xué)為了走“捷徑”,沿著AC路線行走,破壞草坪.
(1)請求出小路EC段的長度;
(2)請求出實(shí)際上這些同學(xué)僅僅少走了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn),,與軸交于點(diǎn),直線經(jīng)過,兩點(diǎn).
求拋物線的解析式;
在上方的拋物線上有一動點(diǎn).
①如圖,當(dāng)點(diǎn)運(yùn)動到某位置時,以,為鄰邊的平行四邊形第四個頂點(diǎn)恰好也在拋物線上,求出此時點(diǎn)的坐標(biāo);
②如圖,過點(diǎn),的直線交于點(diǎn),若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程.
若,求方程的根;
找出一組正整數(shù),,使得方程的三個根均為整數(shù);
證明:只有一組正整數(shù),,使得方程的三個根均為整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,≌,≌,B,E,C在一條直線上下列結(jié)論:是的平分線;;;線段DE是的中線;其中正確的有 ()個.
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸的一個交點(diǎn)是,頂點(diǎn)是,根據(jù)
圖象回答下列問題:
當(dāng)________時,隨的增大而增大;
方程的兩個根為________,方程的根為________;
不等式的解集為________;
若方程無解,則的取值范圍為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)閱讀材料:分解因式:
解:
=
=
=
=
=,
此種方法抓住了二次項(xiàng)和一次項(xiàng)的特點(diǎn),然后加一項(xiàng),使三項(xiàng)成為完全平方式,我們把這種分解因式的方法叫配方法.
(1)用上述方法分解因式:;
(2)無論取何值,代數(shù)式總有一個最小值,請嘗試用配方法求出當(dāng)取何值時代數(shù)式的值最小,并求出這個最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com