【題目】如圖所示,在一個長方形的草坪ABCD中,修了一條A-E-C的小路.AB=12米,BC=16米,AE=11米.極個別同學(xué)為了走“捷徑”,沿著AC路線行走,破壞草坪.
(1)請求出小路EC段的長度;
(2)請求出實際上這些同學(xué)僅僅少走了多少米?
【答案】(1)13;(2)4.
【解析】
(1)由矩形的性質(zhì)可得:AD=BC=16米,CD= AB=12米,∠D=90°,根據(jù)已知條件可求出DE,再根據(jù)勾股定理即可求出EC;
(2)小路的總長為:AE+EC=24米,根據(jù)勾股定理即可求出AC,從而求出實際上這些同學(xué)僅僅少走的路程.
解:(1)∵四邊形ABCD是矩形
∴AD=BC=16米,CD= AB=12米,∠D=90°
∵AE=11米
∴DE= AD-AE=5米
根據(jù)勾股定理可得:EC=米
(2)小路的總長為:AE+EC=24米
根據(jù)勾股定理可得:AC=米
故實際上這些同學(xué)僅僅少走了:24-20=4米.
答:實際上這些同學(xué)僅僅少走了4米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB>AD,把矩形沿對角線AC所在直線折疊,使點B落在點E處,AE交CD于F,連接DE.
(1)求證:△ADE≌△CED
(2)若AD=4,AB=8,求△ACF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動,設(shè)點D、E運動的時間是t秒過點D作于點F,連接DE、EF.
求證:;
四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
當(dāng)t為何值時,為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有A、B兩個餐廳,甲、乙兩名學(xué)生各自隨機(jī)選擇其中一個餐廳用餐,請用列表或畫樹狀圖的方法解答:
(1)甲、乙兩名學(xué)生在同一餐廳用餐的概率;
(2)甲、乙兩名學(xué)生至少有一人在B餐廳的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,利用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不要求寫作法),并根據(jù)要求填空:
(1)作∠B的平分線BD,交AC于點D;
(2)作線段AB的垂直平分線EF,交AB于點E,交AC于點F;
(3)如果點F與點D重合,則∠A= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OAPB、ADFE的頂點A、D. B在坐標(biāo)軸上,點B在AP上,點P、F在函數(shù)上,已知正方形OAPB的面積是9.
(1)求k的值和直線OP的解析式;
(2)求正方形ADFE的邊長
(3)函數(shù)在第三象限的圖像上是否存在一點Q,使得△ABQ的面積為10.5?若存在,求出Q點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先列出下列問題中的函數(shù)表達(dá)式,再指出它們各屬于什么函數(shù).
電壓為時,電阻與電流的函數(shù)關(guān)系;
食堂每天用煤,用煤總量與用煤天數(shù)(天)的函數(shù)關(guān)系;
積為常數(shù)的兩個因數(shù)與的函數(shù)關(guān)系;
杠桿平衡時,阻力為,阻力臂長為,動力與動力臂的函數(shù)關(guān)系(杠桿本
身所受重力不計).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com